亚洲 第一区 欧美日韩_在线观看免费黄色网站号_在线日韩人妻观看_A在线免费观看黄片

這是描述信息
兆易創(chuàng)新GD32-GigaDevice-兆易創(chuàng)新代理

兆易創(chuàng)新GD32E230G8U6-GD32 ARM Cortex-M23 Microcontroller

兆易創(chuàng)新GD32E230G8U6-GD32 ARM Cortex-M23 Microcontroller GigaDevice Semiconductor Inc. GD32E230xx ARM? Cortex?-M23 32-bit MCU Datasheet General description The GD32E230xx device belongs to the value line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the ARM? Cortex?-M23 core. The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor delivers high energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier and a 17-cycle divider. The GD32E230xx device incorporates the ARM? Cortex?-M23 32-bit processor core operating at up to 72 MHz frequency with Flash accesses 0~2 wait states to obtain maximum efficiency. It provides up to 64 KB embedded Flash memory and up to 8 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC and one comparator, up to five general 16-bit timers, a basic timer, a PWM advanced timer, as well as standard and advanced communication interfaces: up to two SPIs, two I2Cs, two USARTs, and an I2S. The device operates from a 1.8 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications. The above features make the GD32E230xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on. ? Device information Table 2-1. GD32E230xx devices features and peripheral list ? Part Number GD32E230xx ? K4U6 K6U6 K8U6 K4T6 K6T6 K8T6 C4T6 C6T6 C8T6 FLASH (KB) 16 32 64 16 32 64 16 32 64 SRAM (KB) 4 6 8 4 4 8 4 6 8 Timers General timer(16-bit) 4 (2,13,15,16) 4 (2,13,15,16) 5 (2,13-16) 4 (2,13,15,16) 4 (2,13,15,16) 5 (2,13-16) 4 (2,13,15,16) 4 (2,13,15,16) 5 (2,13-16) ? Advanced timer(16-bit) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) ? SysTick 1 1 1 1 1 1 1 1 1 ? Basic timer(16-bit) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) 1 (5) ? Watchdog 2 2 2 2 2 2 2 2 2 ? RTC 1 1 1 1 1 1 1 1 1 Connectivity ? USART 1 (0) 2 (0-1) 2 (0-1) 1 (0) 2 (0-1) 2 (0-1) 1 (0) 2 (0-1) 2 (0-1) ? ? I2C 1 (0) 1 (0) 2 (0-1) 1 (0) 1 (0) 2 (0-1) 1 (0) 1 (0) 2 (0-1) ? ? SPI/I2S 1/1 (0)/(0) 1/1 (0)/(0) 2/1 (0-1)/(0) 1/1 (0)/(0) 1/1 (0)/(0) 2/1 (0-1)/(0) 1/1 (0)/(0) 1/1 (0)/(0) 2/1 (0-1)/(0) GPIO 27 27 27 25 25 25 39 39 39 CMP 1 1 1 1 1 1 1 1 1 EXTI 16 16 16 16 16 16 16 16 16 ADC Units
兆易創(chuàng)新GD32-GigaDevice-兆易創(chuàng)新代理
產(chǎn)品描述

兆易創(chuàng)新GD32E230G8U6-GD32 ARM Cortex-M23 Microcontroller

GigaDevice Semiconductor Inc.
GD32E230xx
ARM® Cortex®-M23 32-bit MCU
Datasheet

General description

The GD32E230xx device belongs to the value line of GD32 MCU family. It is a new 32-bit general-purpose microcontroller based on the ARM® Cortex®-M23 core. The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor delivers high energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier and a 17-cycle divider.
The GD32E230xx device incorporates the ARM® Cortex®-M23 32-bit processor core operating at up to 72 MHz frequency with Flash accesses 0~2 wait states to obtain maximum efficiency. It provides up to 64 KB embedded Flash memory and up to 8 KB SRAM memory. An extensive range of enhanced I/Os and peripherals connected to two APB buses. The devices offer one 12-bit ADC and one comparator, up to five general 16-bit timers, a basic timer, a PWM advanced timer, as well as standard and advanced communication interfaces: up to two SPIs, two I2Cs, two USARTs, and an I2S.
The device operates from a 1.8 to 3.6 V power supply and available in –40 to +85 °C temperature range. Several power saving modes provide the flexibility for maximum optimization between wakeup latency and power consumption, an especially important consideration in low power applications.
The above features make the GD32E230xx devices suitable for a wide range of applications, especially in areas such as industrial control, motor drives, user interface, power monitor and alarm systems, consumer and handheld equipment, gaming and GPS, E-bike and so on.

 

Device information

Table 2-1. GD32E230xx devices features and peripheral list

 

Part Number

GD32E230xx

 

K4U6

K6U6

K8U6

K4T6

K6T6

K8T6

C4T6

C6T6

C8T6

FLASH (KB)

16

32

64

16

32

64

16

32

64

SRAM (KB)

4

6

8

4

4

8

4

6

8

Timers

General

timer(16-bit)

4

(2,13,15,16)

4

(2,13,15,16)

5

(2,13-16)

4

(2,13,15,16)

4

(2,13,15,16)

5

(2,13-16)

4

(2,13,15,16)

4

(2,13,15,16)

5

(2,13-16)

 

Advanced

timer(16-bit)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

 

SysTick

1

1

1

1

1

1

1

1

1

 

Basic

timer(16-bit)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

 

Watchdog

2

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

1

Connectivity

 

USART

1

(0)

2

(0-1)

2

(0-1)

1

(0)

2

(0-1)

2

(0-1)

1

(0)

2

(0-1)

2

(0-1)

 

 

I2C

1

(0)

1

(0)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

 

 

SPI/I2S

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

GPIO

27

27

27

25

25

25

39

39

39

CMP

1

1

1

1

1

1

1

1

1

EXTI

16

16

16

16

16

16

16

16

16

ADC

Units

1

1

1

1

1

1

1

1

1

 

Channels

(External)

 

10

 

10

 

10

 

10

 

10

 

10

 

10

 

10

 

10

 

Channels

(Internal)

 

2

 

2

 

2

 

2

 

2

 

2

 

2

 

2

 

2

Package

QFN32

LQFP32

LQFP48

 

 

Part Number

GD32E230xx

 

F4V6

F6V6

F8V6

F4P6

F6P6

F8P6

G4U6

G6U6

G8U6

FLASH (KB)

16

32

64

16

32

64

16

32

64

SRAM (KB)

4

6

8

4

6

8

4

6

8

Timers

General

timer(16-bit)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

4

(2,13,15,16)

5

(2,13-16)

 

Advanced

timer(16-bit)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

1

(0)

 

SysTick

1

1

1

1

1

1

1

1

1

 

Basic

timer(16-bit)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

1

(5)

 

Watchdog

2

2

2

2

2

2

2

2

2

 

RTC

1

1

1

1

1

1

1

1

1

Connectivity

 

USART

1

(0)

2

(0-1)

2

(0-1)

1

(0)

2

(0-1)

2

(0-1)

1

(0)

2

(0-1)

2

(0-1)

 

 

I2C

1

(0)

1

(0)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

1

(0)

1

(0)

2

(0-1)

 

 

SPI/I2S

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

1/1

(0)/(0)

1/1

(0)/(0)

2/1

(0-1)/(0)

GPIO

15

15

15

15

15

15

23

23

23

CMP

1

1

1

1

1

1

1

1

1

EXTI

16

16

16

16

16

16

16

16

16

ADC

Units

1

1

1

1

1

1

1

1

1

 

Channels

(External)

 

9

 

9

 

9

 

9

 

9

 

9

 

10

 

10

 

10

 

Channels

(Internal)

 

2

 

2

 

2

 

2

 

2

 

2

 

2

 

2

 

2

Package

LGA20

TSSOP20

QFN28

 

Memory map

Table 2-3. GD32E230xx memory map

Pre-defined

Regions

 

Bus

 

ADDRESS

 

Peripherals

 

 

0xE000 0000 - 0xE00F FFFF

Cortex M23 internal peripherals

External Device

 

0xA000 0000 - 0xDFFF FFFF

Reserved

External RAM

 

0x60000000 - 0x9FFFFFFF

Reserved

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peripherals

 

AHB1

0x5004 0000 - 0x5FFF FFFF

Reserved

 

 

0x5000 0000 - 0x5003 FFFF

Reserved

 

 

 

 

 

AHB2

0x4800 1800 - 0x4FFF FFFF

Reserved

 

 

0x4800 1400 - 0x4800 17FF

GPIOF

 

 

0x4800 1000 - 0x4800 13FF

Reserved

 

 

0x4800 0C00 - 0x4800 0FFF

Reserved

 

 

0x4800 0800 - 0x4800 0BFF

GPIOC

 

 

0x4800 0400 - 0x4800 07FF

GPIOB

 

 

0x4800 0000 - 0x4800 03FF

GPIOA

 

 

 

 

 

 

 

AHB1

0x4002 4400 - 0x47FF FFFF

Reserved

 

 

0x4002 4000 - 0x4002 43FF

Reserved

 

 

0x4002 3400 - 0x4002 3FFF

Reserved

 

 

0x4002 3000 - 0x4002 33FF

CRC

 

 

0x4002 2400 - 0x4002 2FFF

Reserved

 

 

0x4002 2000 - 0x4002 23FF

FMC

 

 

0x4002 1400 - 0x4002 1FFF

Reserved

 

 

0x4002 1000 - 0x4002 13FF

RCU

 

 

0x4002 0400 - 0x4002 0FFF

Reserved

 

 

0x4002 0000 - 0x4002 03FF

DMA

 

 

 

 

 

 

 

 

 

 

 

APB2

0x4001 8000 - 0x4001 FFFF

Reserved

 

 

0x4001 5C00 - 0x4001 7FFF

Reserved

 

 

0x4001 5800 - 0x4001 5BFF

DBG

 

 

0x4001 4C00 - 0x4001 57FF

Reserved

 

 

0x4001 4800 - 0x4001 4BFF

TIMER16

 

 

0x4001 4400 - 0x4001 47FF

TIMER15

 

 

0x4001 4000 - 0x4001 43FF

TIMER14

 

 

0x4001 3C00 - 0x4001 3FFF

Reserved

 

 

0x4001 3800 - 0x4001 3BFF

USART0

 

 

0x4001 3400 - 0x4001 37FF

Reserved

 

 

0x4001 3000 - 0x4001 33FF

SPI0/I2S0

 

 

0x4001 2C00 - 0x4001 2FFF

TIMER0

 

 

0x4001 2800 - 0x4001 2BFF

Reserved

 

 

0x4001 2400 - 0x4001 27FF

ADC

 

 

0x4001 0800 - 0x4001 23FF

Reserved

 

Pre-defined

Regions

 

Bus

 

ADDRESS

 

Peripherals

 

 

0x4001 0400 - 0x4001 07FF

EXTI

 

 

0x4001 0000 - 0x4001 03FF

SYSCFG + CMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APB1

0x4000 CC00 - 0x4000 FFFF

Reserved

 

 

0x4000 C800 - 0x4000 CBFF

Reserved

 

 

0x4000 C400 - 0x4000 C7FF

Reserved

 

 

0x4000 C000 - 0x4000 C3FF

Reserved

 

 

0x4000 8000 - 0x4000 BFFF

Reserved

 

 

0x4000 7C00 - 0x4000 7FFF

Reserved

 

 

0x4000 7800 - 0x4000 7BFF

Reserved

 

 

0x4000 7400 - 0x4000 77FF

Reserved

 

 

0x4000 7000 - 0x4000 73FF

PMU

 

 

0x4000 6400 - 0x4000 6FFF

Reserved

 

 

0x4000 6000 - 0x4000 63FF

Reserved

 

 

0x4000 5C00 - 0x4000 5FFF

Reserved

 

 

0x4000 5800 - 0x4000 5BFF

I2C1

 

 

0x4000 5400 - 0x4000 57FF

I2C0

 

 

0x4000 4800 - 0x4000 53FF

Reserved

 

 

0x4000 4400 - 0x4000 47FF

USART1

 

 

0x4000 4000 - 0x4000 43FF

Reserved

 

 

0x4000 3C00 - 0x4000 3FFF

Reserved

 

 

0x4000 3800 - 0x4000 3BFF

SPI1

 

 

0x4000 3400 - 0x4000 37FF

Reserved

 

 

0x4000 3000 - 0x4000 33FF

FWDGT

 

 

0x4000 2C00 - 0x4000 2FFF

WWDGT

 

 

0x4000 2800 - 0x4000 2BFF

RTC

 

 

0x4000 2400 - 0x4000 27FF

Reserved

 

 

0x4000 2000 - 0x4000 23FF

TIMER13

 

 

0x4000 1400 - 0x4000 1FFF

Reserved

 

 

0x4000 1000 - 0x4000 13FF

TIMER5

 

 

0x4000 0800 - 0x4000 0FFF

Reserved

 

 

0x4000 0400 - 0x4000 07FF

TIMER2

 

 

0x4000 0000 - 0x4000 03FF

Reserved

 

SRAM

 

0x2000 2000 - 0x3FFF FFFF

Reserved

 

 

0x2000 0000 - 0x2000 1FFF

SRAM

 

 

 

Code

 

0x1FFF F810 - 0x1FFF FFFF

Reserved

 

 

0x1FFF F800 - 0x1FFF F80F

Option bytes

 

 

0x1FFF EC00 - 0x1FFF F7FF

System memory

 

 

0x0801 0000 - 0x1FFF EBFF

Reserved

 

 

0x0800 0000 - 0x0800 FFFF

Main Flash memory

 

 

0x0001 0000 - 0x07FF FFFF

Reserved

 

GD32E230Cx LQFP48 pin definitions

Table 2-4. GD32E230Cx LQFP48 pin definitions

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VDD

1

P

 

Default: VDD

PC13- TAMPER-

RTC

 

2

 

I/O

 

 

Default: PC13

Additional: RTC_TAMP0, RTC_TS, RTC_OUT, WKUP1

PC14-

OSC32IN

 

3

 

I/O

 

Default: PC14 Additional: OSC32IN

PC15-

OSC32OUT

 

4

 

I/O

 

Default: PC15 Additional: OSC32OUT

 

PF0-OSCIN

 

5

 

I/O

 

5VT

Default: PF0 Alternate: I2C0_SDA

Additional: OSCIN

 

PF1- OSCOUT

 

6

 

I/O

 

5VT

Default: PF1

Alternate: I2C0_SCL Additional: OSCOUT

NRST

7

I/O

 

Default: NRST

VSSA

8

P

 

Default: VSSA

VDDA

9

P

 

Default: VDDA

 

 

PA0-WKUP

 

 

10

 

 

I/O

 

Default: PA0

Alternate: USART0_CTS(3), USART1_CTS(4), CMP_OUT, I2C1_SCL(5)

Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0

 

 

PA1

 

 

11

 

 

I/O

 

Default: PA1

Alternate: USART0_RTS(3), USART1_RTS(4), I2C1_SDA(5), EVENTOUT, TIMER14_CH0_ON(5)

Additional: ADC_IN1, CMP_IP

 

 

PA2

 

 

12

 

 

I/O

 

Default: PA2

Alternate: USART0_TX(3), USART1_TX(4), TIMER14_CH0(5)

Additional: ADC_IN2, CMP_IM7

 

 

PA3

 

 

13

 

 

I/O

 

Default: PA3

Alternate: USART0_RX(3), USART1_RX(4), TIMER14_CH1(5)

Additional: ADC_IN3

 

 

PA4

 

 

14

 

 

I/O

 

Default: PA4

Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3), USART1_CK(4), TIMER13_CH0, SPI1_NSS(5)

Additional: ADC_IN4, CMP_IM4

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Default: PA5

PA5

15

I/O

 

Alternate: SPI0_SCK, I2S0_CK

 

 

 

 

Additional: ADC_IN5, CMP_IM5

 

 

 

 

Default: PA6

 

 

 

 

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,

PA6

16

I/O

 

TIMER0_BRKIN, TIMER15_CH0, EVENTOUT,

 

 

 

 

CMP_OUT

 

 

 

 

Additional: ADC_IN6

 

 

 

 

Default: PA7

 

 

 

 

Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,

PA7

17

I/O

 

TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,

 

 

 

 

EVENTOUT

 

 

 

 

Additional: ADC_IN7

 

 

 

 

Default: PB0

PB0

18

I/O

 

Alternate: TIMER2_CH2, TIMER0_CH1_ON,

USART1_RX(4), EVENTOUT

 

 

 

 

Additional: ADC_IN8

 

 

 

 

Default: PB1

PB1

19

I/O

 

Alternate: TIMER2_CH3, TIMER13_CH0,

TIMER0_CH2_ON, SPI1_SCK(5)

 

 

 

 

Additional: ADC_IN9

 

PB2

 

20

 

I/O

 

5VT

Default: PB2

Alternate: TIMER2_ETI

 

 

 

 

Default: PB10

PB10

21

I/O

5VT

Alternate: I2C0_SCL(3),I2C1_SCL(5), SPI1_IO2(5),

 

 

 

 

SPI1_SCK(5)

 

 

 

 

Default: PB11

PB11

22

I/O

5VT

Alternate: I2C0_SDA(3),I2C1_SDA(5), EVENTOUT,

 

 

 

 

SPI1_IO3(5)

VSS

23

P

 

Default: VSS

VDD

24

P

 

Default: VDD

 

 

 

 

Default: PB12

PB12

25

I/O

5VT

Alternate: SPI0_NSS(3), SPI1_NSS(5), TIMER0_BRKIN,

 

 

 

 

I2C1_SMBA(5), EVENTOUT

 

 

 

 

Default: PB13

PB13

26

I/O

5VT

Alternate: SPI0_SCK(3), SPI1_SCK(5), TIMER0_CH0_ON,

 

 

 

 

I2C1_TXFRAME(5), I2C1_SCL(5)

 

 

 

 

Default: PB14

PB14

27

I/O

5VT

Alternate: SPI0_MISO(3), SPI1_MISO(5),

 

 

 

 

TIMER0_CH1_ON, TIMER14_CH0(5), I2C1_SDA(5)

 

 

 

 

Default: PB15

 

 

 

 

Alternate: SPI0_MOSI(3), SPI1_MOSI(5),

PB15

28

I/O

5VT

TIMER0_CH2_ON, TIMER14_CH0_ON(5),

 

 

 

 

TIMER14_CH1(5)

 

 

 

 

Additional: RTC_REFIN, WKUP6

 

 

Pin Name

 

Pins

Pin Type(1)

I/O Level(2)

 

Functions description

 

PA8

 

29

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT, USART1_TX(4), EVENTOUT

 

PA9

 

30

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN(5), I2C0_SCL, CK_OUT

 

PA10

 

31

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2,

TIMER16_BRKIN, I2C0_SDA

 

PA11

 

32

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, TIMER0_CH3, CMP_OUT, EVENTOUT, SPI1_IO2(5), I2C0_SMBA, I2C1_SCL(5)

 

PA12

 

33

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, TIMER0_ETI, EVENTOUT, SPI1_IO3(5), I2C0_TXFRAME, I2C1_SDA(5)

 

PA13

 

34

 

I/O

 

5VT

Default: PA13/SWDIO

Alternate: SWDIO, IFRP_OUT, SPI1_MISO(5)

 

PF6

 

35

 

I/O

 

5VT

Default: PF6

Alternate: I2C0_SCL(3), I2C1_SCL(5)

 

PF7

 

36

 

I/O

 

5VT

Default: PF7

Alternate: I2C0_SDA(3), I2C1_SDA(5)

 

PA14

 

37

 

I/O

 

5VT

Default: PA14/SWCLK

Alternate: USART0_TX(3), USART1_TX(4), SWCLK, SPI1_MOSI(5)

 

PA15

 

38

 

I/O

 

5VT

Default: PA15

Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3), USART1_RX(4), SPI1_NSS(5), EVENTOUT

 

PB3

 

39

 

I/O

 

5VT

Default: PB3

Alternate: SPI0_SCK, I2S0_CK, EVENTOUT

 

PB4

 

40

 

I/O

 

5VT

Default: PB4

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN

 

 

PB5

 

 

41

 

 

I/O

 

 

5VT

Default: PB5

Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1

Additional: WKUP5

 

PB6

 

42

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON

 

PB7

 

43

 

I/O

 

5VT

Default: PB7

Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON

BOOT0

44

I

 

Default: BOOT0

 

PB8

 

45

 

I/O

 

5VT

Default: PB8

Alternate: I2C0_SCL, TIMER15_CH0

 

PB9

 

46

 

I/O

 

5VT

Default: PB9

Alternate: I2C0_SDA, IFRP_OUT, TIMER16_CH0,

 

 

Pin Name

 

Pins

Pin Type(1)

I/O Level(2)

 

Functions description

 

 

 

 

EVENTOUT, I2S0_MCK, SPI1_NSS(5)

VSS

47

P

 

Default: VSS

VDD

48

P

 

Default: VDD

Notes:
(1)Type: I = input, O = output, P = power.
(2)I/O Level: 5VT = 5 V tolerant.
(3)Functions are available on GD32E230C4 devices only.
(4)Functions are available on GD32E230C8/6 devices.
(5)Functions are available on GD32E230C8 devices only.
 

GD32E230Kx LQFP32 pin definitions

Table 2-5. GD32E230Kx LQFP32 pin definitions

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VDD

1

P

 

Default: VDD

 

PF0-OSCIN

 

2

 

I/O

 

5VT

Default: PF0 Alternate: I2C0_SDA

Additional: OSCIN

 

PF1- OSCOUT

 

3

 

I/O

 

5VT

Default: PF1

Alternate: I2C0_SCL Additional: OSCOUT

NRST

4

I/O

 

Default: NRST

VDDA

5

P

 

Default: VDDA

 

 

PA0-WKUP

 

 

6

 

 

I/O

 

Default: PA0

Alternate: USART0_CTS(3), USART1_CTS(4), CMP_OUT, I2C1_SCL(5)

Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0

 

 

PA1

 

 

7

 

 

I/O

 

Default: PA1

Alternate: USART0_RTS(3), USART1_RTS(4), I2C1_SDA(5), EVENTOUT, TIMER14_CH0_ON(5)

Additional: ADC_IN1, CMP_IP

 

 

PA2

 

 

8

 

 

I/O

 

Default: PA2

Alternate: USART0_TX(3), USART1_TX(4), TIMER14_CH0(5)

Additional: ADC_IN2, CMP_IM7

 

 

PA3

 

 

9

 

 

I/O

 

Default: PA3

Alternate: USART0_RX(3), USART1_RX(4), TIMER14_CH1(5)

Additional: ADC_IN3

 

PA4

 

10

 

I/O

 

Default: PA4

Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3), USART1_CK(4), TIMER13_CH0, SPI1_NSS(5)

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Additional: ADC_IN4, CMP_IM4

 

 

 

 

Default: PA5

PA5

11

I/O

 

Alternate: SPI0_SCK, I2S0_CK

 

 

 

 

Additional: ADC_IN5, CMP_IM5

 

 

 

 

Default: PA6

 

 

 

 

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,

PA6

12

I/O

 

TIMER0_BRKIN, TIMER15_CH0, EVENTOUT,

 

 

 

 

CMP_OUT

 

 

 

 

Additional: ADC_IN6

 

 

 

 

Default: PA7

 

 

 

 

Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,

PA7

13

I/O

 

TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,

 

 

 

 

EVENTOUT

 

 

 

 

Additional: ADC_IN7

 

 

 

 

Default: PB0

PB0

14

I/O

 

Alternate: TIMER2_CH2, TIMER0_CH1_ON,

USART1_RX(4), EVENTOUT

 

 

 

 

Additional: ADC_IN8

 

 

 

 

Default: PB1

PB1

15

I/O

 

Alternate: TIMER2_CH3, TIMER13_CH0,

TIMER0_CH2_ON, SPI1_SCK(5)

 

 

 

 

Additional: ADC_IN9

VSS

16

P

 

Default: VSS

VDD

17

P

 

Default: VDD

 

 

 

 

Default: PA8

PA8

18

I/O

5VT

Alternate: USART0_CK, TIMER0_CH0, CK_OUT,

 

 

 

 

USART1_TX(4), EVENTOUT

 

 

 

 

Default: PA9

PA9

19

I/O

5VT

Alternate: USART0_TX, TIMER0_CH1,

 

 

 

 

TIMER14_BRKIN(5), I2C0_SCL, CK_OUT

 

 

 

 

Default: PA10

PA10

20

I/O

5VT

Alternate: USART0_RX, TIMER0_CH2,

 

 

 

 

TIMER16_BRKIN, I2C0_SDA

 

 

 

 

Default: PA11

PA11

21

I/O

5VT

Alternate: USART0_CTS, TIMER0_CH3, CMP_OUT,

 

 

 

 

EVENTOUT, SPI1_IO2(5), I2C0_SMBA, I2C1_SCL(5)

 

 

 

 

Default: PA12

PA12

22

I/O

5VT

Alternate: USART0_RTS, TIMER0_ETI, EVENTOUT,

 

 

 

 

SPI1_IO3(5), I2C0_TXFRAME, I2C1_SDA(5)

 

PA13

 

23

 

I/O

 

5VT

Default: PA13/SWDIO

Alternate: SWDIO, IFRP_OUT, SPI1_MISO(5)

 

 

 

 

Default: PA14/SWCLK

PA14

24

I/O

5VT

Alternate: USART0_TX(3), USART1_TX(4), SWCLK,

 

 

 

 

SPI1_MOSI(5)

 

PA15

 

25

 

I/O

 

5VT

Default: PA15

Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3),

 

 

Pin Name

 

Pins

Pin Type(1)

I/O Level(2)

 

Functions description

 

 

 

 

USART1_RX(4), SPI1_NSS(5), EVENTOUT

 

PB3

 

26

 

I/O

 

5VT

Default: PB3

Alternate: SPI0_SCK, I2S0_CK, EVENTOUT

 

PB4

 

27

 

I/O

 

5VT

Default: PB4

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN

 

 

PB5

 

 

28

 

 

I/O

 

 

5VT

Default: PB5

Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1

Additional: WKUP5

 

PB6

 

29

 

I/O

 

5VT

Default: PB6

Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON

 

PB7

 

30

 

I/O

 

5VT

Default: PB7

Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON

BOOT0

31

I

 

Default: BOOT0

VSS

32

P

 

Default: VSS

Notes:
(1)Type: I = input, O = output, P = power.
(2)I/O Level: 5VT = 5 V tolerant.
(3)Functions are available on GD32E230K4 devices only.
(4)Functions are available on GD32E230K8/6 devices.
(5)Functions are available on GD32E230K8 devices only.

GD32E230Kx QFN32 pin definitions

Table 2-6. GD32E230Kx QFN32 pin definitions

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

VDD

1

P

 

Default: VDD

 

PF0-OSCIN

 

2

 

I/O

 

5VT

Default: PF0 Alternate: I2C0_SDA

Additional: OSCIN

 

PF1- OSCOUT

 

3

 

I/O

 

5VT

Default: PF1 Alternate: I2C0_SCL

Additional: OSCOUT

NRST

4

I/O

 

Default: NRST

VDDA

5

P

 

Default: VDDA

 

 

PA0-WKUP

 

 

6

 

 

I/O

 

Default: PA0

Alternate: USART0_CTS(3), USART1_CTS(4), CMP_OUT, I2C1_SCL(5)

Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0

 

PA1

 

7

 

I/O

 

Default: PA1

Alternate: USART0_RTS(3), USART1_RTS(4), I2C1_SDA(5), EVENTOUT, TIMER14_CH0_ON(5)

 

 

Pin Name

 

Pins

Pin Type(1)

I/O Level(2)

 

Functions description

 

 

 

 

Additional: ADC_IN1, CMP_IP

 

 

PA2

 

 

8

 

 

I/O

 

Default: PA2

Alternate: USART0_TX(3), USART1_TX(4), TIMER14_CH0(5)

Additional: ADC_IN2, CMP_IM7

 

 

PA3

 

 

9

 

 

I/O

 

Default: PA3

Alternate: USART0_RX(3), USART1_RX(4), TIMER14_CH1(5)

Additional: ADC_IN3

 

 

PA4

 

 

10

 

 

I/O

 

Default: PA4

Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3), USART1_CK(4), TIMER13_CH0, SPI1_NSS(5)

Additional: ADC_IN4, CMP_IM4

 

PA5

 

11

 

I/O

 

Default: PA5

Alternate: SPI0_SCK, I2S0_CK Additional: ADC_IN5, CMP_IM5

 

 

PA6

 

 

12

 

 

I/O

 

Default: PA6

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, TIMER0_BRKIN, TIMER15_CH0, EVENTOUT, CMP_OUT

Additional: ADC_IN6

 

 

PA7

 

 

13

 

 

I/O

 

Default: PA7

Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1, TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0, EVENTOUT

Additional: ADC_IN7

 

 

PB0

 

 

14

 

 

I/O

 

Default: PB0

Alternate: TIMER2_CH2, TIMER0_CH1_ON, USART1_RX(4), EVENTOUT

Additional: ADC_IN8

 

 

PB1

 

 

15

 

 

I/O

 

Default: PB1

Alternate: TIMER2_CH3, TIMER13_CH0, TIMER0_CH2_ON, SPI1_SCK(5)

Additional: ADC_IN9

 

PB2

 

16

 

I/O

 

5VT

Default: PB2

Alternate: TIMER2_ETI

VDD

17

P

 

Default: VDD

 

PA8

 

18

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT, USART1_TX(4), EVENTOUT

 

PA9

 

19

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN(5), I2C0_SCL, CK_OUT

 

PA10

 

20

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2,

TIMER16_BRKIN, I2C0_SDA

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

PA11

 

21

 

I/O

 

5VT

Default: PA11

Alternate: USART0_CTS, TIMER0_CH3, CMP_OUT, EVENTOUT, SPI1_IO2(5), I2C0_SMBA, I2C1_SCL(5)

 

PA12

 

22

 

I/O

 

5VT

Default: PA12

Alternate: USART0_RTS, TIMER0_ETI, EVENTOUT, SPI1_IO3(5), I2C0_TXFRAME, I2C1_SDA(5)

PA13

23

I/O

5VT

Default: PA13/SWDIO

Alternate: SWDIO, IFRP_OUT, SPI1_MISO(5)

 

PA14

 

24

 

I/O

 

5VT

Default: PA14/SWCLK

Alternate: USART0_TX(3), USART1_TX(4), SWCLK, SPI1_MOSI(5)

 

PA15

 

25

 

I/O

 

5VT

Default: PA15

Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3), USART1_RX(4), SPI1_NSS(5), EVENTOUT

PB3

26

I/O

5VT

Default: PB3

Alternate: SPI0_SCK, I2S0_CK, EVENTOUT

 

PB4

 

27

 

I/O

 

5VT

Default: PB4

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN

 

 

PB5

 

 

28

 

 

I/O

 

 

5VT

Default: PB5

Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1

Additional: WKUP5

PB6

29

I/O

5VT

Default: PB6

Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON

PB7

30

I/O

5VT

Default: PB7

Alternate:I2C0_SDA, USART0_RX,TIMER16_CH0_ON

BOOT0

31

I

 

Default: BOOT0

PB8

32

I/O

5VT

Default: PB8

Alternate: I2C0_SCL, TIMER15_CH0

Notes:
(1)Type: I = input, O = output, P = power.
(2)I/O Level: 5VT = 5 V tolerant.
(3)Functions are available on GD32E230K4 devices only.
(4)Functions are available on GD32E230K8/6 devices.
(5)Functions are available on GD32E230K8 devices only.

GD32E230Gx QFN28 pin definitions

Table 2-7. GD32E230Gx QFN28 pin definitions

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

BOOT0

1

I

 

Default: BOOT0

PF0-OSCIN

2

I/O

5VT

Default: PF0

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

Alternate: I2C0_SDA

 

 

 

 

Additional: OSCIN

PF1- OSCOUT

 

3

 

I/O

 

5VT

Default: PF1 Alternate: I2C0_SCL

Additional: OSCOUT

NRST

4

I/O

 

Default: NRST

VDDA

5

P

 

Default: VDDA

 

 

 

 

Default: PA0

PA0-WKUP

6

I/O

 

Alternate: USART0_CTS(3), USART1_CTS(4), CMP_OUT,

I2C1_SCL(5)

 

 

 

 

Additional: ADC_IN0, CMP_IM6, RTC_TAMP1, WKUP0

 

 

 

 

Default: PA1

PA1

7

I/O

 

Alternate: USART0_RTS(3), USART1_RTS(4),

I2C1_SDA(5), EVENTOUT, TIMER14_CH0_ON(5)

 

 

 

 

Additional: ADC_IN1, CMP_IP

 

 

 

 

Default: PA2

PA2

8

I/O

 

Alternate: USART0_TX(3), USART1_TX(4),

TIMER14_CH0(5)

 

 

 

 

Additional: ADC_IN2, CMP_IM7

 

 

 

 

Default: PA3

PA3

9

I/O

 

Alternate: USART0_RX(3), USART1_RX(4),

TIMER14_CH1(5)

 

 

 

 

Additional: ADC_IN3

 

 

 

 

Default: PA4

PA4

10

I/O

 

Alternate: SPI0_NSS, I2S0_WS, USART0_CK(3),

USART1_CK(4), TIMER13_CH0, SPI1_NSS(5)

 

 

 

 

Additional: ADC_IN4, CMP_IM4

 

 

 

 

Default: PA5

PA5

11

I/O

 

Alternate: SPI0_SCK, I2S0_CK

 

 

 

 

Additional: ADC_IN5, CMP_IM5

 

 

 

 

Default: PA6

 

 

 

 

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0,

PA6

12

I/O

 

TIMER0_BRKIN, TIMER15_CH0, EVENTOUT,

 

 

 

 

CMP_OUT

 

 

 

 

Additional: ADC_IN6

 

 

 

 

Default: PA7

 

 

 

 

Alternate: SPI0_MOSI, I2S0_SD, TIMER2_CH1,

PA7

13

I/O

 

TIMER13_CH0, TIMER0_CH0_ON, TIMER16_CH0,

 

 

 

 

EVENTOUT

 

 

 

 

Additional: ADC_IN7

 

 

 

 

Default: PB0

PB0

14

I/O

 

Alternate: TIMER2_CH2, TIMER0_CH1_ON,

USART1_RX(4), EVENTOUT

 

 

 

 

Additional: ADC_IN8

 

PB1

 

15

 

I/O

 

Default: PB1

Alternate: TIMER2_CH3, TIMER13_CH0,

 

 

Pin Name

 

Pins

Pin

Type(1)

I/O

Level(2)

 

Functions description

 

 

 

 

TIMER0_CH2_ON, SPI1_SCK(5)

Additional: ADC_IN9

VSS

16

P

 

Default: VSS

VDD

17

P

 

Default: VDD

 

PA8

 

18

 

I/O

 

5VT

Default: PA8

Alternate: USART0_CK, TIMER0_CH0, CK_OUT, USART1_TX(4), EVENTOUT

 

PA9(6)

 

19

 

I/O

 

5VT

Default: PA9

Alternate: USART0_TX, TIMER0_CH1, TIMER14_BRKIN(5), I2C0_SCL, CK_OUT

 

PA10(6)

 

20

 

I/O

 

5VT

Default: PA10

Alternate: USART0_RX, TIMER0_CH2,

TIMER16_BRKIN, I2C0_SDA

PA13

21

I/O

5VT

Default: PA13/SWDIO

Alternate: SWDIO, IFRP_OUT, SPI1_MISO(5)

 

PA14

 

22

 

I/O

 

5VT

Default: PA14/SWCLK

Alternate: USART0_TX(3), USART1_TX(4), SWCLK, SPI1_MOSI(5)

 

PA15

 

23

 

I/O

 

5VT

Default: PA15

Alternate: SPI0_NSS, I2S0_WS, USART0_RX(3), USART1_RX(4), SPI1_NSS(5), EVENTOUT

PB3

24

I/O

5VT

Default: PB3

Alternate: SPI0_SCK, I2S0_CK, EVENTOUT

 

PB4

 

25

 

I/O

 

5VT

Default: PB4

Alternate: SPI0_MISO, I2S0_MCK, TIMER2_CH0, EVENTOUT, I2C0_TXFRAME, TIMER16_BRKIN

 

 

PB5

 

 

26

 

 

I/O

 

 

5VT

Default: PB5

Alternate: SPI0_MOSI,I2S0_SD, I2C0_SMBA, TIMER15_BRKIN, TIMER2_CH1

Additional: WKUP5

PB6

27

I/O

5VT

Default: PB6

Alternate: I2C0_SCL, USART0_TX, TIMER15_CH0_ON

PB7

28

I/O

5VT

Default: PB7

Alternate:I2C0_SDA,USART0_RX,TIMER16_CH0_ON

Notes:
(1)Type: I = input, O = output, P = power.
(2)I/O Level: 5VT = 5 V tolerant.
(3)Functions are available on GD32E230G4 devices only.
(4)Functions are available on GD32E230G8/6 devices.
(5)Functions are available on GD32E230G8 devices only.

ARM® Cortex®-M23 core

The Cortex-M23 processor is an energy-efficient processor with a very low gate count. It is intended to be used for microcontroller and deeply embedded applications that require an area-optimized processor. The processor is highly configurable enabling a wide range of implementations from those requiring memory protection and powerful trace technology to cost sensitive devices requiring minimal area, while delivering outstanding computational performance and an advanced system response to interrupts.
32-bit ARM® Cortex®-M23 processor core
Up to 72 MHz operation frequency
Single-cycle multiplication and hardware divider
Ultra-low power, energy-efficient operation
Excellent code density
Integrated Nested Vectored Interrupt Controller (NVIC)
24-bit SysTick timer

The Cortex®-M23 processor is based on the ARMv8-M architecture and supports both Thumb and Thumb-2 instruction sets. Some system peripherals listed below are also provided by Cortex®-M23:
Internal Bus Matrix connected with AHB master, Serial Wire Debug Port and Single-cycle IO port
Nested Vectored Interrupt Controller (NVIC)
Breakpoint Unit(BPU)
Data Watchpoint and Trace (DWT)
Serial Wire Debug Port


Embedded memory

Up to 64 Kbytes of Flash memory
Up to 8 Kbytes of SRAM with hardware parity checking

64 Kbytes of inner Flash and 8 Kbytes of inner SRAM at most is available for storing programs and data, both accessed (R/W) at CPU clock speed with 0~2 wait states. Table 2-3. GD32E230xx memory map shows the memory map of the GD32E230xx series of devices, including code, SRAM, peripheral, and other pre-defined regions.

Clock, reset and supply management

Internal 8 MHz factory-trimmed RC and external 4 to 32 MHz crystal oscillator

Internal 28 MHz RC oscillator
Internal 40 KHz RC calibrated oscillator and external 32.768 KHz crystal oscillator
Integrated system clock PLL
1.8 to 3.6 V application supply and I/Os
Supply Supervisor: POR (Power On Reset), PDR (Power Down Reset), and low voltage detector (LVD)
The Clock Control Unit (CCU) provides a range of oscillator and clock functions. These include speed internal RC oscillator and external crystal oscillator, high speed and low speed two types. Several prescalers allow the frequency configuration of the AHB and two APB domains. The maximum frequency of the AHB, APB2 and APB1 domains is 72 MHz/72 MHz/72 MHz. See Figure 2-8. GD32E230xx clock tree for details on the clock tree.
The Reset Control Unit (RCU) controls three kinds of reset: system reset resets the processor core and peripheral IP components. Power-on reset (POR) and power-down reset (PDR) are always active, and ensures proper operation starting from 1.71 V and down to 1.67 V. The device remains in reset mode when VDD is below a specified threshold. The embedded low voltage detector (LVD) monitors the power supply, compares it to the voltage threshold and generates an interrupt as a warning message for leading the MCU into security.
Power supply schemes:
VDD range: 1.8 to 3.6 V, external power supply for I/Os and the internal regulator. Provided externally through VDD pins.
VSSA, VDDA range: 1.8 to 3.6 V, external analog power supplies for ADC, reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
VBAK range: 1.8 to 3.6 V, power supply for RTC, external clock 32 KHz oscillator and backup registers (through power switch) when VDD is not present.

Boot modes

At startup, boot pins are used to select one of three boot options:
Boot from main Flash memory (default)
Boot from system memory
Boot from on-chip SRAM

In default condition, boot from main Flash memory is selected. The boot loader is located in the internal boot ROM memory (system memory). It is used to reprogram the Flash memory by using USART0 (PA9 and PA10) or USART1 (PA14 and PA15 or PA2 and PA3).

Power saving modes

The MCU supports three kinds of power saving modes to achieve even lower power consumption. They are sleep mode, deep-sleep mode, and standby mode. These operating modes reduce the power consumption and allow the application to achieve the best balance

between the CPU operating time, speed and power consumption.
Sleep mode
In sleep mode, only the clock of CPU core is off. All peripherals continue to operate and any interrupt/event can wake up the system.
Deep-sleep mode
In deep-sleep mode, all clocks in the 1.2V domain are off, and all of the high speed crystal oscillator (IRC8M, HXTAL) and PLL are disabled. Only the contents of SRAM and registers are retained. Any interrupt or wakeup event from EXTI lines can wake up the system from the deep-sleep mode including the 16 external lines, the RTC alarm, RTC tamper and timestamp, CMP output, LVD output and USART wakeup. When exiting the deep-sleep mode, the IRC8M is selected as the system clock.
Standby mode
In standby mode, the whole 1.2V domain is power off, the LDO is shut down, and all of IRC8M, HXTAL and PLL are disabled. The contents of SRAM and registers (except backup registers) are lost. There are four wakeup sources for the standby mode, including the external reset from NRST pin, the RTC alarm, the FWDGT reset, and the rising edge on WKUP pin.

Analog to digital converter (ADC)

12-bit SAR ADC's conversion rate is up to 2 MSPS
12-bit, 10-bit, 8-bit or 6-bit configurable resolution
Hardware oversampling ratio adjustable from 2 to 256x improves resolution to 16-bit
Input voltage range: VSSA to VDDA
Temperature sensor

One 12-bit 2 MSPS multi-channel ADC is integrated in the device. It has a total of 12 multiplexed channels: up to 10 external channels, 1 channel for internal temperature sensor (VSENSE) and 1 channel for internal reference voltage (VREFINT). The input voltage range is between VSSA and VDDA. An on-chip hardware oversampling scheme improves performance while off-loading the related computational burden from the CPU. An analog watchdog block can be used to detect the channels, which are required to remain within a specific threshold window. A configurable channel management block can be used to perform conversions in single, continuous, scan or discontinuous mode to support more advanced use.
The ADC can be triggered from the events generated by the general level 0 timers (TIMERx) and the advanced timer (TIMER0) with internal connection. The temperature sensor can be used to generate a voltage that varies linearly with temperature. It is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage in a digital value.

DMA

5 channels DMA controller
Peripherals supported: Timers, ADC, SPIs, I2Cs, USARTs and I2S

The flexible general-purpose DMA controllers provide a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Three types of access method are supported: peripheral to memory, memory to peripheral, memory to memory.
Each channel is connected to fixed hardware DMA requests. The priorities of DMA channel requests are determined by software configuration and hardware channel number. Transfer size of source and destination are independent and configurable.

General-purpose inputs/outputs (GPIOs)

Up to 39 fast GPIOs, all mappable on 16 external interrupt lines
Analog input/output configurable
Alternate function input/output configurable

There are up to 39 general purpose I/O pins (GPIO) in GD32E230xx, named PA0 ~ PA15 and PB0 ~ PB15, PC13 ~ PC15, PF0 ~ PF1, PF6 ~ PF7 to implement logic input/output functions. Each of the GPIO ports has related control and configuration registers to satisfy the requirements of specific applications. The external interrupts on the GPIO pins of the device have related control and configuration registers in the Interrupt/event controller (EXTI). The GPIO ports are pin-shared with other alternative functions (AFs) to obtain maximum flexibility on the package pins. Each of the GPIO pins can be configured by software as output (push- pull open-drain or analog), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current capable except for analog inputs.

Timers and PWM generation

One 16-bit advanced timer (TIMER0), up to five 16-bit general timers (TIMER2, TIMER13
~ TIMER16), and one 16-bit basic timer (TIMER5)
Up to 4 independent channels of PWM, output compare or input capture for each general timer and external trigger input
16-bit, motor control PWM advanced timer with programmable dead-time generation for output match
Encoder interface controller with two inputs using quadrature decoder
24-bit SysTick timer down counter
2 watchdog timers (free watchdog timer and window watchdog timer)

The advanced timer (TIMER0) can be used as a three-phase PWM multiplexed on 6 channels.

It has complementary PWM outputs with programmable dead-time generation. It can also be used as a complete general timer. The 4 independent channels can be used for input capture, output compare, PWM generation (edge- or center- aligned counting modes) and single pulse mode output. If configured as a general 16-bit timer, it has the same functions as the TIMERx timer. It can be synchronized with external signals or to interconnect with other general timers together which have the same architecture and features.
The general timer can be used for a variety of purposes including general time, input signal pulse width measurement or output waveform generation such as a single pulse generation or PWM output, up to 4 independent channels for input capture/output compare. TIMER2 is based on a 16-bit auto-reload up/down counter and a 16-bit prescaler. TIMER13 ~ TIMER16 is based on a 16-bit auto-reload up counter and a 16-bit prescaler. The general timer also supports an encoder interface with two inputs using quadrature decoder.
The basic timer, known as TIMER5 can also be used as a simple 16-bit time base.

The GD32E230xx have two watchdog peripherals, free watchdog and window watchdog. They offer a combination of high safety level, flexibility of use and timing accuracy.
The free watchdog timer includes a 12-bit down-counting counter and an 8-bit prescaler. It is clocked from an independent 40 KHz internal RC and as it operates independently of the main clock, it can operate in deep-sleep and standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management.
The window watchdog is based on a 7-bit down counter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early wakeup interrupt capability and the counter can be frozen in debug mode.
The SysTick timer is dedicated for OS, but could also be used as a standard down counter. The features are shown below:
A 24-bit down counter
Auto reload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source


Real time clock (RTC)

Independent binary-coded decimal (BCD) format timer/counter with five 32-bit backup registers.
Calendar with subsecond, second, minute, hour, week day, date, year and month automatically correction
Alarm function with wake up from deep-sleep and standby mode capability
On-the-fly correction for synchronization with master clock. Digital calibration with 0.954 ppm resolution for compensation of quartz crystal inaccuracy.

The real time clock is an independent timer which provides a set of continuously running counters in backup registers to provide a real calendar function, and provides an alarm interrupt or an expected interrupt. It is not reset by a system or power reset, or when the device wakes up from standby mode. In the RTC unit, there are two prescalers used for implementing the calendar and other functions. One prescaler is a 7-bit asynchronous prescaler and the other is a 15-bit synchronous prescaler.

Inter-integrated circuit (I2C)

Up to two I2C bus interfaces can support both master and slave mode with a frequency up to 1 MHz (Fast mode plus)
Provide arbitration function, optional PEC (packet error checking) generation and checking
Supports 7-bit and 10-bit addressing mode and general call addressing mode
Supports SAM_V mode

C interface is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line (SDA) and a serial clock line (SCL). The I2C module provides different data transfer rates: up to 100 KHz in standard mode, up to 400 KHz in the fast mode and up to 1 MHz in the fast mode plus. The I2C module also has an arbitration detect function to prevent the situation where more than one master attempts to transmit data to the I2C bus at the same time. A CRC-8 calculator is also provided in I2C interface to perform packet error checking for I2C data.

Serial peripheral interface (SPI)

Up to two SPI interfaces with a frequency of up to 18 MHz
Support both master and slave mode
Hardware CRC calculation and transmit automatic CRC error checking
Separate transmit and receive 32-bit FIFO with DMA capability (only in SPI1)
Data frame size can be 4 to 16 bits (only in SPI1)
Quad-SPI configuration available in master mode (only in SPI1)

The SPI interface uses 4 pins, among which are the serial data input and output lines (MISO & MOSI), the clock line (SCK) and the slave select line (NSS). Both SPIs can be served by the DMA controller. The SPI interface may be used for a variety of purposes, including simplex synchronous transfers on two lines with a possible bidirectional data line or reliable communication using CRC checking. Specially, SPI1 has separate transmit and receive 32- bit FIFO with DMA capability and its data frame size can be 4 to 16 bits. Quad-SPI master mode is also supported in SPI1.

Universal synchronous asynchronous receiver transmitter (USART)
Up to two USARTs with operating frequency up to 4.5 MBits/s
Supports both asynchronous and clocked synchronous serial communication modes
IrDA SIR encoder and decoder support
LIN break generation and detection
ISO 7816-3 compliant smart card interface

The USART (USART0, USART1) are used to translate data between parallel and serial interfaces, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. It is also commonly used for RS-232 standard communication. The USART includes a programmable baud rate generator which is capable of dividing the system clock to produce a dedicated clock for the USART transmitter and receiver. The USART also supports DMA function for high speed data communication.

Inter-IC sound (I2S)

One I2S bus Interfaces with sampling frequency from 8 KHz to 192 KHz, multiplexed with SPI0
Support either master or slave mode

The Inter-IC sound (I2S) bus provides a standard communication interface for digital audio applications by 3-wire serial lines. GD32E230xx contain an I2S-bus interface that can be operated with 16/32 bit resolution in master or slave mode, pin multiplexed with SPI0. The audio sampling frequency from 8 KHz to 192 KHz is supported with less than 0.5% accuracy error.

Comparators (CMP)

One fast rail-to-rail low-power comparators with software configurable
Programmable reference voltage (internal or external I/O)

One Comparator (CMP) is implemented within the devices. It can wake up from deep-sleep mode to generate interrupts and breaks for the timers and also can be combined as a window comparator. The internal voltage reference is also connected to ADC_IN17 input channel of the ADC.

Debug mode

Serial wire debug port

Debug capabilities can be accessed by a debug tool via Serial Wire (SW - Debug Port).


Package and operation temperature

LQFP48 (GD32E230CxTx), LQFP32 (GD32E230KxTx), QFN32 (GD32E230KxUx), QFN28 (GD32E230GxUx), TSSOP20 (GD32E230FxPx) and LGA20 (GD32E230FxVx).
Operation temperature range: -40°C to +85°C (industrial level)

掃二維碼用手機(jī)看

飛睿無(wú)線定位測(cè)距uwb標(biāo)簽UWB芯片廠商UWB定位公司實(shí)現(xiàn)無(wú)縫定位的領(lǐng)跑者

在當(dāng)今數(shù)字化世界中,定位技術(shù)的重要性越來(lái)越被廣泛認(rèn)知和應(yīng)用。從室內(nèi)導(dǎo)航到物流跟蹤,無(wú)線測(cè)距UWB芯片的出現(xiàn)為各行各業(yè)帶來(lái)了新的可能性。而在這個(gè)充滿(mǎn)競(jìng)爭(zhēng)的領(lǐng)域中,一家名為飛睿UWB定位公司的無(wú)線定位測(cè)距uwb標(biāo)簽UWB芯片廠商,憑借其先進(jìn)的技術(shù)和創(chuàng)新能力,成功成為實(shí)現(xiàn)無(wú)縫定位的先進(jìn)者。 UWB(Ultra-Wideband)是一種廣泛應(yīng)用于室內(nèi)定位和跟蹤的無(wú)線通信技術(shù)。相比傳統(tǒng)的定位技術(shù),如GPS或Wi-Fi,UWB具有更高的精度和定位準(zhǔn)確性。這一技術(shù)利用短脈沖信號(hào)的傳播時(shí)間來(lái)計(jì)算物體與基站之間的距離,從而實(shí)現(xiàn)高精度的定位。 飛睿UWB定位公司作為一家專(zhuān)注于UWB技術(shù)研發(fā)和應(yīng)用的企業(yè),不僅在無(wú)線定位測(cè)距uwb標(biāo)簽UWB芯片領(lǐng)域擁有深厚的技術(shù)實(shí)力,而且在產(chǎn)品研發(fā)和市場(chǎng)推廣方面也積累了豐富的經(jīng)驗(yàn)。該公司的核心業(yè)務(wù)包括UWB芯片的設(shè)計(jì)、制造、銷(xiāo)售和技術(shù)支持,并提供完整的解決方案來(lái)滿(mǎn)足不同行業(yè)的需求。 一、UWB芯片的優(yōu)勢(shì)和應(yīng)用 UWB芯片作為實(shí)現(xiàn)準(zhǔn)確定位和跟蹤的關(guān)鍵技術(shù),具有許多優(yōu)勢(shì)和廣泛應(yīng)用的潛力。首先,UWB芯片具有高精度的定位能力,可以達(dá)到亞厘米級(jí)的精度,尤其適用于對(duì)位置精度要求高的應(yīng)用場(chǎng)景。其次,UWB技術(shù)在室內(nèi)環(huán)境中的表現(xiàn)出色,能夠克服傳統(tǒng)技術(shù)在室內(nèi)多路徑干擾和信號(hào)衰減方面的限制。此外,UWB芯片還能夠?qū)崿F(xiàn)低功耗和高數(shù)據(jù)傳輸速率,適用于物流追蹤、室內(nèi)導(dǎo)航、智能家居等領(lǐng)域。 二、飛睿UWB定位公司的研發(fā)實(shí)力和技術(shù)創(chuàng)新 飛睿UWB定位公司以其突出的研發(fā)實(shí)力和技術(shù)創(chuàng)新能力在行業(yè)內(nèi)獨(dú)樹(shù)一幟。該公司擁有一支由工程師和科研人員組成的專(zhuān)業(yè)團(tuán)隊(duì),致力于UWB芯片的研發(fā)和創(chuàng)新應(yīng)用。不僅在硬件設(shè)計(jì)方面有著豐富的經(jīng)驗(yàn),還在信號(hào)處理算法和定位算法等核心技術(shù)上有著深入研究。通過(guò)持續(xù)的技術(shù)創(chuàng)新和研發(fā)投入,UWB定位公司不斷地提升產(chǎn)品性能,滿(mǎn)足市場(chǎng)需求。 三、UWB定位公司的產(chǎn)品與解決方案 飛睿作為一家專(zhuān)業(yè)的無(wú)線定位測(cè)距uwb標(biāo)簽UWB芯片廠商,UWB定位公司提供了多款優(yōu)秀的產(chǎn)品與解決方案。首先,飛睿的UWB芯片具有高性能和可靠性,能夠滿(mǎn)足各行業(yè)對(duì)定位精度和穩(wěn)定性的要求。其次,UWB定位公司還提供完善的軟件開(kāi)發(fā)工具和技術(shù)支持,幫助客戶(hù)快速集成和開(kāi)發(fā)應(yīng)用。此外,UWB定位公司還定制化的解決方案,根據(jù)客戶(hù)的具體需求提供全面的技術(shù)支持和服務(wù),確保系統(tǒng)的穩(wěn)定運(yùn)行和良好的用戶(hù)體驗(yàn)。 四、UWB定位公司的應(yīng)用案例 UWB定位公司的產(chǎn)品和解決方案已經(jīng)成功應(yīng)用于多個(gè)行業(yè),并取得了顯著的成果。以下是一些應(yīng)用案例的介紹: 1. 物流和倉(cāng)儲(chǔ)管理:UWB定位技術(shù)可以實(shí)時(shí)追蹤貨物的位置和運(yùn)動(dòng)軌跡,提高物流效率和準(zhǔn)確性。通過(guò)在倉(cāng)庫(kù)內(nèi)部安裝UWB基站,可以實(shí)現(xiàn)對(duì)貨物的高精度定位,減少貨物丟失和誤配的情況,提升倉(cāng)儲(chǔ)管理的效率。 2. 室內(nèi)導(dǎo)航和定位服務(wù):UWB芯片可以用于室內(nèi)導(dǎo)航和定位服務(wù),幫助人們快速找到目的地并提供導(dǎo)航指引。在商場(chǎng)、機(jī)場(chǎng)、醫(yī)院等場(chǎng)所安裝UWB基站,可以提供準(zhǔn)確的導(dǎo)航服務(wù),為用戶(hù)提供更好的體驗(yàn)。 3. 車(chē)聯(lián)網(wǎng)和自動(dòng)駕駛:UWB技術(shù)在車(chē)聯(lián)網(wǎng)和自動(dòng)駕駛領(lǐng)域也有廣泛應(yīng)用。通過(guò)在車(chē)輛中安裝UWB傳感器和芯片,可以實(shí)現(xiàn)車(chē)輛之間的精準(zhǔn)通信和定位,提升駕駛安全性和車(chē)輛自主性。 4. 工業(yè)制造和機(jī)器人:在工業(yè)制造和機(jī)器人領(lǐng)域,UWB技術(shù)可以用于定位和跟蹤移動(dòng)設(shè)備和機(jī)器人的位置,提高生產(chǎn)效率和自動(dòng)化水平。通過(guò)與其他傳感器和系統(tǒng)的結(jié)合,可以實(shí)現(xiàn)更智能化的制造和操作。 五、未來(lái)發(fā)展和挑戰(zhàn) 飛睿作為無(wú)線定位測(cè)距uwb標(biāo)簽UWB芯片廠商和定位技術(shù)提供商,UWB定位公司面臨著許多機(jī)遇和挑戰(zhàn)。隨著物聯(lián)網(wǎng)和人工智能的快速發(fā)展,對(duì)于精準(zhǔn)定位和跟蹤的需求將越來(lái)越大。UWB技術(shù)在室內(nèi)定位、智能交通、工業(yè)制造等領(lǐng)域有著廣闊的應(yīng)用前景。然而,市場(chǎng)競(jìng)爭(zhēng)激烈,技術(shù)要求不斷提高,對(duì)于UWB定位公司來(lái)說(shuō),需要不斷加強(qiáng)技術(shù)研發(fā)和創(chuàng)新能力,提供更優(yōu)秀的產(chǎn)品和解決方案,贏得客戶(hù)的信任和市場(chǎng)份額。 六、技術(shù)合作與生態(tài)建設(shè) 飛睿UWB定位公司在推動(dòng)技術(shù)合作與生態(tài)建設(shè)方面也取得了顯著成績(jī)。他們積極與其他行業(yè)的廠商和合作伙伴進(jìn)行技術(shù)交流和合作,共同推動(dòng)UWB技術(shù)的發(fā)展和應(yīng)用。通過(guò)與硬件設(shè)備生產(chǎn)商、軟件開(kāi)發(fā)公司以及系統(tǒng)集成商等的合作,UWB定位公司不僅拓展了產(chǎn)品的應(yīng)用領(lǐng)域,還實(shí)現(xiàn)了技術(shù)的互補(bǔ)和資源的共享,加快了技術(shù)創(chuàng)新的速度和效果。 七、用戶(hù)體驗(yàn)與滿(mǎn)意度 作為先進(jìn)的UWB芯片廠商和定位技術(shù)提供商,飛睿UWB定位公司一直將用戶(hù)體驗(yàn)和滿(mǎn)意度放在優(yōu)先位置。他們注重產(chǎn)品的易用性和穩(wěn)定性,在產(chǎn)品設(shè)計(jì)和功能開(kāi)發(fā)上持續(xù)優(yōu)化,以提供更好的用戶(hù)體驗(yàn)。同時(shí),UWB定位公司還建立了完善的售后服務(wù)體系,及時(shí)響應(yīng)客戶(hù)的需求和問(wèn)題,并提供技術(shù)支持和解決方案,確保用戶(hù)能夠充分發(fā)揮UWB技術(shù)的價(jià)值和效果,獲得滿(mǎn)意的使用體驗(yàn)。 八、安全與隱私保護(hù) 在定位技術(shù)應(yīng)用的同時(shí),飛睿UWB定位公司也重視用戶(hù)的安全和隱私保護(hù)。他們?cè)诋a(chǎn)品設(shè)計(jì)和開(kāi)發(fā)中注入了安全機(jī)制,采用加密和身份驗(yàn)證等技術(shù)手段,確保用戶(hù)的數(shù)據(jù)和隱私得到有效保護(hù)。同時(shí),UWB定位公司嚴(yán)格遵守相關(guān)法規(guī)和行業(yè)標(biāo)準(zhǔn),保證數(shù)據(jù)的合法和合規(guī)使用,為用戶(hù)提供可信賴(lài)的定位解決方案。 九、社會(huì)責(zé)任與可持續(xù)發(fā)展 作為一家具有社會(huì)責(zé)任感的企業(yè),飛睿uwb標(biāo)簽UWB定位公司積極關(guān)注可持續(xù)發(fā)展和環(huán)境保護(hù)。他們?cè)谏a(chǎn)過(guò)程中注重資源的合理利用和能源的節(jié)約,致力于減少對(duì)環(huán)境的影響。同時(shí),UWB定位公司也積極參與社會(huì)公益活動(dòng),回饋社會(huì),為推動(dòng)可持續(xù)發(fā)展和社會(huì)進(jìn)步做出貢獻(xiàn)。 總結(jié): 飛睿UWB定位公司作為一家先進(jìn)的無(wú)線定位測(cè)距uwb標(biāo)簽UWB芯片廠商和解決方案提供商,通過(guò)先進(jìn)的技術(shù)研發(fā)和創(chuàng)新能力,成功實(shí)現(xiàn)了無(wú)縫定位的先進(jìn)地位。他們的產(chǎn)品和解決方案在物流管理、室內(nèi)導(dǎo)航、車(chē)聯(lián)網(wǎng)、工業(yè)制造等領(lǐng)域展現(xiàn)出了巨大的應(yīng)用潛力和市場(chǎng)前景。同時(shí),UWB定位公司注重用戶(hù)體驗(yàn)和滿(mǎn)意度,積極推動(dòng)技術(shù)合作與生態(tài)建設(shè),關(guān)注安全與隱私保護(hù),承擔(dān)社會(huì)責(zé)任,致力于可持續(xù)發(fā)展。相信在不久的將來(lái),UWB定位公司將以其先進(jìn)的技術(shù)和卓越的服務(wù),繼續(xù)引領(lǐng)無(wú)線測(cè)距UWB芯片領(lǐng)域的發(fā)展,為行業(yè)和用戶(hù)帶來(lái)更多的創(chuàng)新和價(jià)值。
點(diǎn)擊查看更多
18
2022-02

uA級(jí)別智能門(mén)鎖低功耗雷達(dá)模塊讓門(mén)鎖更加智能省電節(jié)約功耗

發(fā)布時(shí)間: : 2022-02--18
uA級(jí)別智能門(mén)鎖低功耗雷達(dá)模塊讓門(mén)鎖更加智能省電節(jié)約功耗,指紋門(mén)鎖并不是什么新鮮事,我相信每個(gè)人都很熟悉。隨著近年來(lái)智能家居的逐步普及,指紋門(mén)鎖也進(jìn)入了成千上萬(wàn)的家庭。今天的功耗雷達(dá)模塊指紋門(mén)鎖不僅消除了繁瑣的鑰匙,而且還提供了各種智能功能,uA級(jí)別智能門(mén)鎖低功耗雷達(dá)模塊用在智能門(mén)鎖上,可以實(shí)現(xiàn)門(mén)鎖的智能感應(yīng)屏幕,使電池壽命延長(zhǎng)3-5倍,如與其他智能家居連接,成為智能場(chǎng)景的開(kāi)關(guān)。所以今天的指紋門(mén)鎖更被稱(chēng)為智能門(mén)鎖。 今天,讓我們來(lái)談?wù)劰睦走_(dá)模塊智能門(mén)鎖的安全性。希望能讓更多想知道智能門(mén)鎖的朋友認(rèn)識(shí)下。 指紋識(shí)別是智能門(mén)鎖的核心 指紋識(shí)別技術(shù)在我們的智能手機(jī)上隨處可見(jiàn)。從以前的實(shí)體指紋識(shí)別到屏幕下的指紋識(shí)別,可以說(shuō)指紋識(shí)別技術(shù)已經(jīng)相當(dāng)成熟。指紋識(shí)別可以說(shuō)是整個(gè)uA級(jí)低功耗雷達(dá)模塊智能門(mén)鎖的核心。 目前主要有三種常見(jiàn)的指紋識(shí)別方法,即光學(xué)指紋識(shí)別、半導(dǎo)體指紋識(shí)別和超聲指紋識(shí)別。 光學(xué)指紋識(shí)別 讓我們先談?wù)劰鈱W(xué)指紋識(shí)別的原理實(shí)際上是光的反射。我們都知道指紋本身是不均勻的。當(dāng)光照射到我們的指紋上時(shí),它會(huì)反射,光接收器可以通過(guò)接收反射的光來(lái)繪制我們的指紋。就像激光雷達(dá)測(cè)繪一樣。 光學(xué)指紋識(shí)別通常出現(xiàn)在打卡機(jī)上,手機(jī)上的屏幕指紋識(shí)別技術(shù)也使用光學(xué)指紋識(shí)別。今天的光學(xué)指紋識(shí)別已經(jīng)達(dá)到了非??斓淖R(shí)別速度。 然而,光學(xué)指紋識(shí)別有一個(gè)缺點(diǎn),即硬件上的活體識(shí)別無(wú)法實(shí)現(xiàn),容易被指模破解。通常,活體識(shí)別是通過(guò)軟件算法進(jìn)行的。如果算法處理不當(dāng),很容易翻車(chē)。 此外,光學(xué)指紋識(shí)別也容易受到液體的影響,濕手解鎖的成功率也會(huì)下降。 超聲指紋識(shí)別 超聲指紋識(shí)別也被稱(chēng)為射頻指紋識(shí)別,其原理與光學(xué)類(lèi)型相似,但超聲波使用聲波反射,實(shí)際上是聲納的縮小版本。因?yàn)槭褂寐暡ǎ灰獡?dān)心水折射會(huì)降低識(shí)別率,所以超聲指紋識(shí)別可以濕手解鎖。然而,超聲指紋識(shí)別在防破解方面與光學(xué)類(lèi)型一樣,不能實(shí)現(xiàn)硬件,可以被指模破解,活體識(shí)別仍然依賴(lài)于算法。 半導(dǎo)體指紋識(shí)別 半導(dǎo)體指紋識(shí)別主要采用電容、電場(chǎng)(即我們所說(shuō)的電感)、溫度和壓力原理來(lái)實(shí)現(xiàn)指紋圖像的收集。當(dāng)用戶(hù)將手指放在前面時(shí),皮膚形成電容陣列的極板,電容陣列的背面是絕緣極板。由于不同區(qū)域指紋的脊柱與谷物之間的距離也不同,因此每個(gè)單元的電容量隨之變化,從而獲得指紋圖像。半導(dǎo)體指紋識(shí)別具有價(jià)格低、體積小、識(shí)別率高的優(yōu)點(diǎn),因此大多數(shù)uA級(jí)低功耗雷達(dá)模塊智能門(mén)鎖都采用了這種方案。半導(dǎo)體指紋識(shí)別的另一個(gè)功能是活體識(shí)別。傳統(tǒng)的硅膠指模無(wú)法破解。 當(dāng)然,這并不意味著半導(dǎo)體可以百分識(shí)別活體。所謂的半導(dǎo)體指紋識(shí)別活體檢測(cè)不使用指紋活體體征。本質(zhì)上,它取決于皮膚的材料特性,這意味著雖然傳統(tǒng)的硅膠指模無(wú)法破解。 一般來(lái)說(shuō),無(wú)論哪種指紋識(shí)別,都有可能被破解,只是說(shuō)破解的水平。然而,今天的指紋識(shí)別,無(wú)論是硬件生活識(shí)別還是算法生活識(shí)別,都相對(duì)成熟,很難破解。畢竟,都可以通過(guò)支付級(jí)別的認(rèn)證,大大保證安全。 目前,市場(chǎng)上大多數(shù)智能門(mén)鎖仍將保留鑰匙孔。除了指紋解鎖外,用戶(hù)還可以用傳統(tǒng)鑰匙開(kāi)門(mén)。留下鑰匙孔的主要目的是在指紋識(shí)別故障或智能門(mén)鎖耗盡時(shí)仍有開(kāi)門(mén)的方法。但由于有鑰匙孔,它表明它可以通過(guò)技術(shù)手段解鎖。 目前市場(chǎng)上的鎖等級(jí)可分為A、B、C三個(gè)等級(jí),這三個(gè)等級(jí)主要是通過(guò)防暴開(kāi)鎖和防技術(shù)開(kāi)鎖的程度來(lái)區(qū)分的。A級(jí)鎖要求技術(shù)解鎖時(shí)間不少于1分鐘,B級(jí)鎖要求不少于5分鐘。即使是高級(jí)別的C級(jí)鎖也只要求技術(shù)解鎖時(shí)間不少于10分鐘。 也就是說(shuō),現(xiàn)在市場(chǎng)上大多數(shù)門(mén)鎖,無(wú)論是什么級(jí)別,在專(zhuān)業(yè)的解鎖大師面前都糊,只不過(guò)是時(shí)間長(zhǎng)短。 安全是重要的,是否安全增加了人們對(duì)uA級(jí)別低功耗雷達(dá)模塊智能門(mén)鎖安全的擔(dān)憂(yōu)。事實(shí)上,現(xiàn)在到處都是攝像頭,強(qiáng)大的人臉識(shí)別,以及移動(dòng)支付的出現(xiàn),使家庭現(xiàn)金減少,所有這些都使得入室盜竊的成本急劇上升,近年來(lái)各省市的入室盜竊幾乎呈懸崖?tīng)钕陆怠? 換句話(huà)說(shuō),無(wú)論鎖有多安全,無(wú)論鎖有多難打開(kāi),都可能比在門(mén)口安裝攝像頭更具威懾力。 因此,擔(dān)心uA級(jí)別低功耗雷達(dá)模塊智能門(mén)鎖是否不安全可能意義不大。畢竟,家里的防盜鎖可能不安全。我們應(yīng)該更加關(guān)注門(mén)鎖能給我們帶來(lái)多少便利。 我們要考慮的是智能門(mén)鎖的兼容性和通用性。畢竟,智能門(mén)鎖近年來(lái)才流行起來(lái)。大多數(shù)人在后期將普通機(jī)械門(mén)鎖升級(jí)為智能門(mén)鎖。因此,智能門(mén)鎖能否與原門(mén)兼容是非常重要的。如果不兼容,發(fā)現(xiàn)無(wú)法安裝是一件非常麻煩的事情。 uA級(jí)別低功耗雷達(dá)模塊智能門(mén)鎖主要是為了避免帶鑰匙的麻煩。因此,智能門(mén)鎖的便利性尤為重要。便利性主要體現(xiàn)在指紋的識(shí)別率上。手指受傷導(dǎo)致指紋磨損或老年人指紋較淺。智能門(mén)鎖能否識(shí)別是非常重要的。 當(dāng)然,如果指紋真的失效,是否有其他解鎖方案,如密碼解鎖或NFC解鎖。還需要注意密碼解鎖是否有虛假密碼等防窺鏡措施。 當(dāng)然,智能門(mén)鎖的耐久性也是一個(gè)需要特別注意的地方。uA級(jí)別低功耗雷達(dá)模塊智能門(mén)鎖主要依靠?jī)?nèi)部電池供電,這就要求智能門(mén)鎖的耐久性盡可能好,否則經(jīng)常充電或更換電池會(huì)非常麻煩。 智能門(mén)鎖低功耗雷達(dá)模塊:讓門(mén)鎖更加智能省電節(jié)約功耗 在當(dāng)今信息化時(shí)代,智能門(mén)鎖已經(jīng)成為人們生活中不可或缺的一部分。對(duì)于門(mén)鎖制造商來(lái)說(shuō),如何提高門(mén)鎖的安全性、實(shí)用性和便利性,成為他們面對(duì)的重要課題。隨著人們對(duì)門(mén)鎖智能化的需求越來(lái)越高,門(mén)鎖的能耗問(wèn)題也成為了門(mén)鎖制造商需要重視的問(wèn)題。為此,越來(lái)越多的門(mén)鎖制造商開(kāi)始推出以低功耗為主題的系列產(chǎn)品。在這樣的背景下,智能門(mén)鎖低功耗雷達(dá)模塊應(yīng)運(yùn)而生。 智能門(mén)鎖低功耗雷達(dá)模塊是一種新型技術(shù),其采取雷達(dá)技術(shù)對(duì)門(mén)鎖周?chē)奈矬w進(jìn)行探測(cè),一旦發(fā)現(xiàn)門(mén)鎖附近有人靠近,便會(huì)將門(mén)鎖自動(dòng)解鎖,無(wú)需使用鑰匙。同時(shí),在保持智能控制的前提下,實(shí)現(xiàn)了門(mén)鎖省電、節(jié)約功耗,延長(zhǎng)門(mén)鎖使用壽命。 在使用智能門(mén)鎖低功耗雷達(dá)模塊的門(mén)鎖中,控制電路和自動(dòng)解鎖機(jī)制是關(guān)鍵的部件??刂齐娐凡捎孟冗M(jìn)的芯片技術(shù),通過(guò)優(yōu)秀的功耗控制以實(shí)現(xiàn)模塊化管理。而自動(dòng)解鎖機(jī)制不僅可以通過(guò)微波信號(hào)控制實(shí)現(xiàn)門(mén)鎖的無(wú)鑰匙解鎖,還能夠在門(mén)鎖未處理的情況下自動(dòng)鎖定,保障門(mén)鎖的安全。 智能門(mén)鎖低功耗雷達(dá)模塊的主要特點(diǎn)是:低功耗、高靈敏度和高可靠性。該模塊在進(jìn)行人體檢測(cè)時(shí),可以遠(yuǎn)距離探測(cè)到距離為5-7米遠(yuǎn)處的人體信號(hào),目標(biāo)檢測(cè)速度極快,而且對(duì)門(mén)鎖周?chē)沫h(huán)境要求不高。同時(shí),該模塊采用了自適應(yīng)自動(dòng)補(bǔ)償技術(shù),能夠根據(jù)不同環(huán)境的變化自動(dòng)調(diào)整信號(hào)發(fā)射和接收參數(shù),減小誤檢率。 在使用智能門(mén)鎖低功耗雷達(dá)模塊的門(mén)鎖中,其功耗可以做到非常低,一組電池能夠支持門(mén)鎖持續(xù)使用幾年左右。而且這樣的智能門(mén)鎖除了具有自動(dòng)解鎖的功能,還可與APP相互匹配,實(shí)現(xiàn)了遠(yuǎn)程操作的便捷性。 總的來(lái)說(shuō),智能門(mén)鎖低功耗雷達(dá)模塊的問(wèn)世,解決了門(mén)鎖安全性和省電節(jié)省方面的問(wèn)題,是智能門(mén)鎖材料不可或缺的一部分。作為門(mén)鎖制造商,只有不斷創(chuàng)新,利用這種新型技術(shù),將會(huì)在行業(yè)中占據(jù)重要的地位。 除了上文所述的主要特點(diǎn)和優(yōu)勢(shì),智能門(mén)鎖低功耗雷達(dá)模塊還具有以下幾點(diǎn): 1. 實(shí)時(shí)監(jiān)測(cè)門(mén)鎖周?chē)h(huán)境變化,通過(guò)物體的距離體積和運(yùn)動(dòng)來(lái)確定是否有人靠近門(mén)鎖,并控制門(mén)鎖的開(kāi)啟或關(guān)閉,使得門(mén)鎖更加智能化。 2. 可對(duì)門(mén)鎖附件進(jìn)行檢測(cè),如門(mén)掛、門(mén)應(yīng)急照明燈以及緊急呼叫按鈕等,并及時(shí)給出響應(yīng),確保門(mén)鎖能夠正常運(yùn)作。這樣,門(mén)鎖在不受干擾的情況下,能夠 保持安全通道。 3. 通過(guò)智能學(xué)習(xí)技術(shù),能夠自適應(yīng)網(wǎng)站多種環(huán)境的變化,讓智能門(mén)鎖低功耗雷達(dá)模塊更加準(zhǔn)確和精細(xì)的控制門(mén)鎖的開(kāi)關(guān),節(jié)約能耗并延長(zhǎng)使用壽命。 4. 能夠與其他智能電器相連,如智能家居系統(tǒng)、電視等,形成智能家居生態(tài)圈,更好地控制家庭訪客進(jìn)出,讓生活更加方便。 綜上所述,智能門(mén)鎖低功耗雷達(dá)模塊的出現(xiàn),對(duì)提升門(mén)鎖能耗管理和智能化有著重要作用。門(mén)鎖制造商只有將這些新型技術(shù)運(yùn)用到門(mén)鎖產(chǎn)品中,才能更加貼合用戶(hù)需求,滿(mǎn)足消費(fèi)市場(chǎng)的日益增長(zhǎng)的智能化需求。
查看詳情 查看詳情
14
2022-01

微波雷達(dá)傳感器雷達(dá)感應(yīng)浴室鏡上的應(yīng)用

發(fā)布時(shí)間: : 2022-01--14
微波雷達(dá)傳感器雷達(dá)感應(yīng)浴室鏡上的應(yīng)用,如今,家用電器的智能化已成為一種常態(tài),越來(lái)越多的人開(kāi)始在自己的浴室里安裝智能浴室鏡。但是還有很多人對(duì)智能浴鏡的理解還不夠深入,今天就來(lái)說(shuō)說(shuō)這個(gè)話(huà)題。 什么是智能浴室鏡?智慧型浴室鏡,顧名思義,就是衛(wèi)浴鏡子智能化升級(jí),入門(mén)級(jí)產(chǎn)品基本具備了彩燈和鏡面觸摸功能,更高檔次的產(chǎn)品安裝有微波雷達(dá)傳感器智能感應(yīng),當(dāng)感應(yīng)到有人接近到一定距離即可開(kāi)啟亮燈或者亮屏操作,也可三色無(wú)極調(diào),智能除霧,語(yǔ)音交互,日程安排備忘,甚至在鏡子上看電視,聽(tīng)音樂(lè),氣象預(yù)報(bào),問(wèn)題查詢(xún),智能控制,健康管理等。 智能化雷達(dá)感應(yīng)浴室鏡與普通鏡的區(qū)別,為什么要選TA?,就功能而言,普通浴鏡價(jià)格用它沒(méi)有什么壓力!而且雷達(dá)感應(yīng)智能浴鏡會(huì)讓人猶豫不決是否“值得一看”。就功能和應(yīng)用而言,普通浴鏡功能單一,而微波雷達(dá)傳感器智能浴室鏡功能創(chuàng)新:鏡子燈光色溫和亮度可以自由調(diào)節(jié),鏡面還可以濕手觸控,智能除霧,既環(huán)保又健康! 盡管智能浴鏡比較新穎,但功能豐富,體驗(yàn)感更好,特別是入門(mén)級(jí)的智能浴鏡,具有基礎(chǔ)智能化功能,真的適合想體驗(yàn)下智能化的小伙伴們。 給衛(wèi)生間安裝微波雷達(dá)傳感器浴室鏡安裝注意什么? ①確定智能浴室鏡的安裝位置,因?yàn)槭前惭b時(shí)在墻壁上打孔,一旦安裝后一般無(wú)法移動(dòng)位置。 ②在選購(gòu)雷達(dá)感應(yīng)智能浴室鏡時(shí),根據(jù)安裝位置確定鏡子的形狀和尺寸。 ③確定智能浴鏡的安裝位置后,在布線時(shí)為鏡子預(yù)留好電源線。 ④確定微波雷達(dá)傳感器智能浴鏡的安裝高度,一般智能浴鏡的標(biāo)準(zhǔn)安裝高度約85cm(從地磚到鏡子底),具體安裝高度要根據(jù)家庭成員的身高及使用習(xí)慣來(lái)決定。 ⑤鏡面遇到污漬,可用酒精或30%清潔稀釋液擦洗,平時(shí)可用干毛巾養(yǎng)護(hù),注意多通風(fēng)。
查看詳情 查看詳情
05
2025-02

樓區(qū)燈控雷達(dá)人體微動(dòng)感應(yīng)器的智慧之光

發(fā)布時(shí)間: : 2025-02--05
在現(xiàn)代都市的樓區(qū)管理中,節(jié)能減排與智能化管理已成為不可忽視的趨勢(shì)。隨著科技的飛速發(fā)展,雷達(dá)人體微動(dòng)感應(yīng)器作為一種高效、智能的傳感設(shè)備,正逐步成為樓區(qū)照明系統(tǒng)升級(jí)的重要選擇。本文將深入探討雷達(dá)人體微動(dòng)感應(yīng)器在樓區(qū)燈控中的應(yīng)用,分析其工作原理、優(yōu)勢(shì)、應(yīng)用場(chǎng)景以及未來(lái)發(fā)展趨勢(shì),旨在為讀者呈現(xiàn)一幅智慧樓區(qū)照明的藍(lán)圖。 一、雷達(dá)人體微動(dòng)感應(yīng)器概述 1.1 定義與原理 雷達(dá)人體微動(dòng)感應(yīng)器,顧名思義,是一種利用雷達(dá)技術(shù)檢測(cè)人體微小動(dòng)作并觸發(fā)相應(yīng)控制動(dòng)作的智能傳感器。它不同于傳統(tǒng)的紅外感應(yīng)器,后者依賴(lài)于人體散發(fā)的紅外熱量進(jìn)行探測(cè),易受環(huán)境溫度、障礙物遮擋等因素影響。而雷達(dá)感應(yīng)器則通過(guò)發(fā)射無(wú)線電波(通常是微波頻段),并接收其反射回來(lái)的信號(hào),分析這些信號(hào)的變化來(lái)識(shí)別目標(biāo)的存在及其微小運(yùn)動(dòng),如人的走動(dòng)、揮手等。這種非接觸式的探測(cè)方式,使得雷達(dá)感應(yīng)器在復(fù)雜環(huán)境中具有更高的穩(wěn)定性和可靠性。 1.2 技術(shù)特點(diǎn) 高精度識(shí)別:能夠精準(zhǔn)區(qū)分人體與其他移動(dòng)物體,減少誤觸發(fā)。 穿透力強(qiáng):能穿透一定厚度的非金屬障礙物(如玻璃、木板),適用于多種安裝環(huán)境。 環(huán)境適應(yīng)性強(qiáng):不受光照、溫度、濕度等外界環(huán)境變化的影響,全天候穩(wěn)定工作。 低功耗設(shè)計(jì):采用先進(jìn)的低功耗技術(shù),延長(zhǎng)電池壽命,降低維護(hù)成本。 智能調(diào)節(jié):可根據(jù)人體距離和動(dòng)作強(qiáng)度自動(dòng)調(diào)節(jié)燈光亮度或開(kāi)關(guān)狀態(tài),實(shí)現(xiàn)更加人性化的照明體驗(yàn)。 二、樓區(qū)燈控中的雷達(dá)人體微動(dòng)感應(yīng)器應(yīng)用 2.1 節(jié)能減排,綠色照明 在樓區(qū)公共區(qū)域,如走廊、樓梯間、地下車(chē)庫(kù)等,傳統(tǒng)照明方式往往采用定時(shí)開(kāi)關(guān)或持續(xù)照明,不僅浪費(fèi)能源,還增加了運(yùn)營(yíng)成本。而引入雷達(dá)人體微動(dòng)感應(yīng)器后,可以實(shí)現(xiàn)“人來(lái)燈亮,人走燈滅”的智能化控制,有效避免無(wú)人時(shí)的無(wú)效照明,顯著降低能耗,促進(jìn)綠色生態(tài)樓區(qū)的建設(shè)。 2.2 提升居住體驗(yàn) 居民在樓區(qū)內(nèi)的行動(dòng)變得更加便捷與安全。當(dāng)夜晚歸家時(shí),無(wú)需手動(dòng)開(kāi)關(guān)燈光,感應(yīng)器自動(dòng)感知并開(kāi)啟照明,為居民提供溫馨、舒適的照明環(huán)境。同時(shí),在緊急情況下,如火災(zāi)逃生時(shí),感應(yīng)器能迅速響應(yīng),確保逃生通道的照明充足,提高疏散效率。 2.3 智能化管理 樓區(qū)管理者可以通過(guò)集成系統(tǒng)遠(yuǎn)程監(jiān)控照明設(shè)備的工作狀態(tài),實(shí)現(xiàn)故障預(yù)警、能耗分析等功能,提高管理效率。此外,結(jié)合大數(shù)據(jù)分析,還能進(jìn)一步優(yōu)化照明策略,如根據(jù)季節(jié)變化、人流密度等因素調(diào)整照明亮度和時(shí)間,實(shí)現(xiàn)更加精細(xì)化的管理。 三、雷達(dá)人體微動(dòng)感應(yīng)器的技術(shù)優(yōu)勢(shì)與應(yīng)用案例 3.1 技術(shù)優(yōu)勢(shì) 精準(zhǔn)識(shí)別:通過(guò)先進(jìn)的信號(hào)處理技術(shù),能夠準(zhǔn)確區(qū)分人體與寵物、風(fēng)吹草動(dòng)等干擾因素,減少誤報(bào)。 寬范圍覆蓋:雷達(dá)波束角度可調(diào),可適應(yīng)不同場(chǎng)景的需求,實(shí)現(xiàn)大面積或特定區(qū)域的精準(zhǔn)探測(cè)。 智能聯(lián)動(dòng):可與樓區(qū)安防系統(tǒng)、門(mén)禁系統(tǒng)等集成,實(shí)現(xiàn)多系統(tǒng)間的智能聯(lián)動(dòng),提升整體安防水平。 3.2 應(yīng)用案例 案例一:智能地下車(chē)庫(kù)照明 某住宅小區(qū)采用雷達(dá)人體微動(dòng)感應(yīng)器對(duì)地下車(chē)庫(kù)進(jìn)行智能化照明改造。通過(guò)安裝感應(yīng)器,車(chē)庫(kù)內(nèi)照明實(shí)現(xiàn)自動(dòng)開(kāi)關(guān),不僅為車(chē)主提供了便捷的照明服務(wù),還大大減少了能源消耗。同時(shí),結(jié)合環(huán)境監(jiān)測(cè)系統(tǒng),自動(dòng)調(diào)節(jié)燈光亮度,營(yíng)造更加舒適的停車(chē)環(huán)境。 案例二:辦公樓走廊照明優(yōu)化 某大型辦公樓利用雷達(dá)人體微動(dòng)感應(yīng)器對(duì)走廊照明進(jìn)行智能化升級(jí)。感應(yīng)器根據(jù)人員流動(dòng)情況自動(dòng)調(diào)節(jié)燈光亮度和開(kāi)關(guān)狀態(tài),有效降低了能耗。此外,通過(guò)集成系統(tǒng)監(jiān)控,管理人員可實(shí)時(shí)查看各樓層走廊照明狀態(tài),及時(shí)處理異常情況,提升了管理效率。 四、未來(lái)發(fā)展趨勢(shì)與挑戰(zhàn) 4.1 發(fā)展趨勢(shì) 技術(shù)融合:隨著物聯(lián)網(wǎng)、人工智能等技術(shù)的不斷發(fā)展,雷達(dá)人體微動(dòng)感應(yīng)器將與其他智能設(shè)備深度融合,形成更加完善的智能照明解決方案。 個(gè)性化定制:根據(jù)不同場(chǎng)景和用戶(hù)需求,提供個(gè)性化的照明控制方案,如根據(jù)不同時(shí)間段、天氣狀況等自動(dòng)調(diào)節(jié)照明效果。 智能化升級(jí):通過(guò)算法優(yōu)化和大數(shù)據(jù)分析,實(shí)現(xiàn)更加精準(zhǔn)的照明控制和能耗管理,提升整體智能化水平。 4.2 面臨挑戰(zhàn) 成本問(wèn)題:雖然雷達(dá)人體微動(dòng)感應(yīng)器在節(jié)能減排和智能化管理方面具有顯著優(yōu)勢(shì),但其初期投入成本相對(duì)較高,需要樓區(qū)管理者權(quán)衡利弊。 標(biāo)準(zhǔn)統(tǒng)一:目前市場(chǎng)上雷達(dá)人體微動(dòng)感應(yīng)器的產(chǎn)品種類(lèi)繁多,技術(shù)標(biāo)準(zhǔn)尚未完全統(tǒng)一,這給系統(tǒng)集成和后期維護(hù)帶來(lái)了一定的挑戰(zhàn)。因此,推動(dòng)行業(yè)標(biāo)準(zhǔn)的制定和實(shí)施,將是未來(lái)發(fā)展的重要方向。 隱私保護(hù):隨著智能化設(shè)備的普及,隱私保護(hù)問(wèn)題日益受到關(guān)注。雷達(dá)人體微動(dòng)感應(yīng)器在捕捉人體動(dòng)作信息時(shí),如何確保數(shù)據(jù)的安全性和隱私性,避免信息泄露,成為了一個(gè)亟待解決的問(wèn)題。需要開(kāi)發(fā)商和監(jiān)管機(jī)構(gòu)共同努力,制定嚴(yán)格的數(shù)據(jù)保護(hù)政策和監(jiān)管措施。 五、結(jié)語(yǔ) 樓區(qū)燈控雷達(dá)人體微動(dòng)感應(yīng)器的應(yīng)用,是智慧城市建設(shè)的重要一環(huán)。它不僅能夠有效降低能耗,提升居民居住體驗(yàn),還為實(shí)現(xiàn)樓區(qū)智能化管理提供了有力支持。隨著技術(shù)的不斷進(jìn)步和市場(chǎng)的逐步成熟,雷達(dá)人體微動(dòng)感應(yīng)器將在更多領(lǐng)域展現(xiàn)其獨(dú)特魅力,推動(dòng)智慧城市向更高水平發(fā)展。 未來(lái),我們期待看到更多創(chuàng)新技術(shù)的涌現(xiàn),如更高精度的雷達(dá)探測(cè)技術(shù)、更智能的算法優(yōu)化、更便捷的用戶(hù)交互體驗(yàn)等,這些都將為雷達(dá)人體微動(dòng)感應(yīng)器的應(yīng)用帶來(lái)無(wú)限可能。同時(shí),我們也需要關(guān)注并解決其面臨的成本、標(biāo)準(zhǔn)和隱私保護(hù)等挑戰(zhàn),確保技術(shù)的健康發(fā)展和社會(huì)應(yīng)用的廣泛推廣。 總之,樓區(qū)燈控雷達(dá)人體微動(dòng)感應(yīng)器作為智能照明領(lǐng)域的創(chuàng)新者,正以其獨(dú)特的優(yōu)勢(shì)創(chuàng)新著樓區(qū)照明系統(tǒng)的變革。我們有理由相信,在不久的將來(lái),它將成為智慧樓區(qū)不可或缺的一部分,為人們的生活帶來(lái)更多的便利與舒適。讓我們共同期待這一天的到來(lái),見(jiàn)證智慧之光照亮每一個(gè)角落的美好時(shí)刻。
查看詳情 查看詳情
24
2025-01

RFID無(wú)線測(cè)距模塊在醫(yī)院的創(chuàng)新應(yīng)用與前景展望

發(fā)布時(shí)間: : 2025-01--24
隨著科技的飛速發(fā)展,無(wú)線通信技術(shù)在各行各業(yè)中得到了廣泛的應(yīng)用。特別是在醫(yī)療領(lǐng)域,RFID(無(wú)線射頻識(shí)別)無(wú)線測(cè)距模塊憑借其獨(dú)特的優(yōu)勢(shì),為醫(yī)院的日常運(yùn)營(yíng)和患者管理帶來(lái)了創(chuàng)新性的變化。本文將從RFID無(wú)線測(cè)距模塊的原理、特點(diǎn)及其在醫(yī)院中的應(yīng)用和前景等方面進(jìn)行深入探討。 二、RFID無(wú)線測(cè)距模塊概述 RFID無(wú)線測(cè)距模塊是一種基于無(wú)線射頻識(shí)別技術(shù)的測(cè)距裝置。它通過(guò)發(fā)射射頻信號(hào),與帶有RFID標(biāo)簽的目標(biāo)進(jìn)行無(wú)線通信,并依據(jù)信號(hào)的傳播時(shí)間和信號(hào)強(qiáng)度等參數(shù),實(shí)現(xiàn)對(duì)目標(biāo)距離的準(zhǔn)確測(cè)量。RFID無(wú)線測(cè)距模塊具有測(cè)量精度高、抗干擾能力強(qiáng)、適應(yīng)范圍廣等特點(diǎn),因此在醫(yī)療領(lǐng)域具有廣泛的應(yīng)用前景。 三、RFID無(wú)線測(cè)距模塊在醫(yī)院的應(yīng)用 醫(yī)療設(shè)備管理 在醫(yī)院中,各種醫(yī)療設(shè)備的管理是一項(xiàng)繁瑣而重要的工作。通過(guò)為醫(yī)療設(shè)備配備RFID標(biāo)簽,并利用RFID無(wú)線測(cè)距模塊進(jìn)行實(shí)時(shí)定位,醫(yī)院可以實(shí)現(xiàn)對(duì)醫(yī)療設(shè)備的準(zhǔn)確管理。例如,當(dāng)某一設(shè)備被移動(dòng)或使用時(shí),系統(tǒng)可以自動(dòng)記錄其位置和使用情況,為設(shè)備的調(diào)度和維護(hù)提供有力支持。 患者定位與追蹤 在大型醫(yī)院中,患者的定位與追蹤是一項(xiàng)具有挑戰(zhàn)性的任務(wù)。通過(guò)為患者佩戴帶有RFID標(biāo)簽的手環(huán)或胸牌,醫(yī)院可以利用RFID無(wú)線測(cè)距模塊實(shí)現(xiàn)對(duì)患者的實(shí)時(shí)定位。這有助于醫(yī)護(hù)人員快速找到患者,提高醫(yī)療服務(wù)的效率。同時(shí),對(duì)于需要特殊關(guān)注的患者(如老年人、兒童或危重患者),醫(yī)院還可以通過(guò)設(shè)置安全區(qū)域,利用RFID無(wú)線測(cè)距模塊進(jìn)行實(shí)時(shí)監(jiān)控,確保患者的安全。 藥品與物資管理 藥品和物資的管理對(duì)于醫(yī)院的正常運(yùn)轉(zhuǎn)至關(guān)重要。通過(guò)為藥品和物資配備RFID標(biāo)簽,并利用RFID無(wú)線測(cè)距模塊進(jìn)行實(shí)時(shí)定位,醫(yī)院可以實(shí)現(xiàn)對(duì)藥品和物資的準(zhǔn)確管理。這有助于減少藥品的丟失和浪費(fèi),提高物資的利用效率。同時(shí),對(duì)于過(guò)期藥品或損壞物資,醫(yī)院也可以及時(shí)發(fā)現(xiàn)并處理,確保醫(yī)療安全。 手術(shù)室與重癥監(jiān)護(hù)室管理 手術(shù)室和重癥監(jiān)護(hù)室是醫(yī)院中為關(guān)鍵的區(qū)域之一。通過(guò)在這些區(qū)域部署RFID無(wú)線測(cè)距模塊,醫(yī)院可以實(shí)現(xiàn)對(duì)手術(shù)器械、患者生命體征等信息的實(shí)時(shí)監(jiān)控。例如,當(dāng)手術(shù)器械被移動(dòng)或使用時(shí),系統(tǒng)可以自動(dòng)記錄其位置和使用情況,為手術(shù)室的清潔和消毒提供有力支持。同時(shí),對(duì)于重癥監(jiān)護(hù)室的患者,醫(yī)院還可以通過(guò)實(shí)時(shí)監(jiān)測(cè)患者的生命體征數(shù)據(jù),及時(shí)發(fā)現(xiàn)并處理異常情況,提高患者的治愈率。 醫(yī)患交互與信息服務(wù) 除了以上幾個(gè)方面的應(yīng)用外,RFID無(wú)線測(cè)距模塊還可以在醫(yī)患交互和信息服務(wù)方面發(fā)揮重要作用。例如,通過(guò)在醫(yī)院內(nèi)部部署RFID無(wú)線測(cè)距模塊和相應(yīng)的信息服務(wù)系統(tǒng),醫(yī)院可以為患者提供更為便捷、個(gè)性化的服務(wù)。例如,患者可以通過(guò)手機(jī)等移動(dòng)設(shè)備查詢(xún)自己的檢查報(bào)告、用藥記錄等信息;醫(yī)護(hù)人員也可以通過(guò)系統(tǒng)快速獲取患者的病歷資料和醫(yī)囑信息,提高醫(yī)療服務(wù)的質(zhì)量和效率。 四、RFID無(wú)線測(cè)距模塊在醫(yī)院的前景展望 隨著物聯(lián)網(wǎng)技術(shù)的不斷發(fā)展,RFID無(wú)線測(cè)距模塊在醫(yī)院的應(yīng)用將會(huì)越來(lái)越廣泛。未來(lái),我們可以預(yù)見(jiàn)以下幾個(gè)方面的發(fā)展趨勢(shì): 智能化管理:通過(guò)集成更多的傳感器和智能算法,RFID無(wú)線測(cè)距模塊將能夠?qū)崿F(xiàn)更為智能化、精細(xì)化的管理。例如,通過(guò)實(shí)時(shí)監(jiān)測(cè)醫(yī)療設(shè)備的使用情況和維護(hù)狀態(tài),系統(tǒng)可以自動(dòng)預(yù)測(cè)設(shè)備的壽命和維修需求,為醫(yī)院提供更為精準(zhǔn)的決策支持。 精準(zhǔn)化醫(yī)療:隨著醫(yī)療技術(shù)的不斷進(jìn)步,RFID無(wú)線測(cè)距模塊將在精準(zhǔn)化醫(yī)療方面發(fā)揮重要作用。例如,通過(guò)實(shí)時(shí)監(jiān)測(cè)患者的生命體征數(shù)據(jù)和運(yùn)動(dòng)軌跡等信息,醫(yī)生可以更加準(zhǔn)確地判斷患者的病情和治療效果,為患者提供更加個(gè)性化的治療方案。 跨界融合:隨著跨界融合的不斷發(fā)展,RFID無(wú)線測(cè)距模塊將與更多的技術(shù)和應(yīng)用進(jìn)行融合。例如,通過(guò)與云計(jì)算、大數(shù)據(jù)、人工智能等技術(shù)的結(jié)合,RFID無(wú)線測(cè)距模塊將能夠?qū)崿F(xiàn)更為復(fù)雜、的應(yīng)用場(chǎng)景,為醫(yī)院的運(yùn)營(yíng)和管理帶來(lái)更大的便利和價(jià)值。 五、結(jié)語(yǔ) 總之,RFID無(wú)線測(cè)距模塊作為一種創(chuàng)新的無(wú)線通信技術(shù),在醫(yī)療領(lǐng)域具有廣泛的應(yīng)用前景。通過(guò)對(duì)其原理、特點(diǎn)以及在醫(yī)院中的應(yīng)用進(jìn)行深入探討和分析,我們可以更加清晰地看到其在醫(yī)療領(lǐng)域的重要性和潛力。未來(lái),隨著技術(shù)的不斷進(jìn)步和應(yīng)用場(chǎng)景的不斷拓展,RFID無(wú)線測(cè)距模塊將為醫(yī)院的運(yùn)營(yíng)和管理帶來(lái)更多的便利和價(jià)值。
查看詳情 查看詳情
23
2025-01

WIFI無(wú)線測(cè)距模塊在大型商場(chǎng)中的應(yīng)用與優(yōu)勢(shì)

發(fā)布時(shí)間: : 2025-01--23
隨著科技的飛速發(fā)展,無(wú)線通信技術(shù)已廣泛應(yīng)用于各個(gè)領(lǐng)域。在大型商場(chǎng)中,為了提高顧客體驗(yàn)、優(yōu)化商品布局以及實(shí)現(xiàn)精準(zhǔn)的市場(chǎng)分析,WIFI無(wú)線測(cè)距模塊的應(yīng)用變得日益重要。本文將詳細(xì)探討WIFI無(wú)線測(cè)距模塊在大型商場(chǎng)中的應(yīng)用與優(yōu)勢(shì),以及如何通過(guò)該技術(shù)提升商場(chǎng)的運(yùn)營(yíng)效率和市場(chǎng)競(jìng)爭(zhēng)力。 二、WIFI無(wú)線測(cè)距模塊技術(shù)概述 WIFI無(wú)線測(cè)距模塊是一種基于WIFI信號(hào)傳輸原理的測(cè)距技術(shù)。它通過(guò)測(cè)量無(wú)線信號(hào)從發(fā)射點(diǎn)到接收點(diǎn)之間的傳輸時(shí)間或信號(hào)衰減程度,來(lái)計(jì)算兩點(diǎn)之間的距離。與傳統(tǒng)的有線測(cè)距技術(shù)相比,WIFI無(wú)線測(cè)距模塊具有安裝方便、成本低廉、適用范圍廣等優(yōu)點(diǎn)。 三、WIFI無(wú)線測(cè)距模塊在大型商場(chǎng)中的應(yīng)用 顧客行為分析 通過(guò)在商場(chǎng)內(nèi)部署WIFI無(wú)線測(cè)距模塊,可以實(shí)時(shí)監(jiān)測(cè)顧客在商場(chǎng)內(nèi)的行走軌跡和停留時(shí)間。結(jié)合大數(shù)據(jù)分析技術(shù),可以對(duì)顧客的消費(fèi)習(xí)慣、興趣偏好等進(jìn)行深入挖掘,為商場(chǎng)的商品布局、促銷(xiāo)活動(dòng)提供有力支持。例如,發(fā)現(xiàn)顧客在某一區(qū)域的停留時(shí)間較長(zhǎng),商場(chǎng)可以據(jù)此調(diào)整商品陳列或增設(shè)休息區(qū),提升顧客滿(mǎn)意度。 精準(zhǔn)導(dǎo)航與定位 WIFI無(wú)線測(cè)距模塊可以實(shí)現(xiàn)商場(chǎng)內(nèi)的精準(zhǔn)導(dǎo)航與定位功能。顧客可以通過(guò)手機(jī)APP或商場(chǎng)內(nèi)的導(dǎo)航設(shè)備,實(shí)時(shí)查看自己的位置以及周邊商鋪的信息。這不僅方便了顧客的購(gòu)物體驗(yàn),還能有效引導(dǎo)顧客前往目標(biāo)商鋪,提高商鋪的曝光率和客流量。 人流量統(tǒng)計(jì)與預(yù)測(cè) WIFI無(wú)線測(cè)距模塊可以實(shí)時(shí)監(jiān)測(cè)商場(chǎng)內(nèi)的人流量,并通過(guò)數(shù)據(jù)分析預(yù)測(cè)未來(lái)的人流量趨勢(shì)。商場(chǎng)管理者可以根據(jù)人流量數(shù)據(jù),合理安排工作人員的工作時(shí)間和工作內(nèi)容,提高工作效率。同時(shí),人流量數(shù)據(jù)還能為商場(chǎng)的促銷(xiāo)活動(dòng)提供有力支持,確保活動(dòng)效果大化。 智能安防監(jiān)控 WIFI無(wú)線測(cè)距模塊在智能安防監(jiān)控方面也發(fā)揮著重要作用。通過(guò)實(shí)時(shí)監(jiān)測(cè)商場(chǎng)內(nèi)的人員流動(dòng)情況,可以及時(shí)發(fā)現(xiàn)異常情況并采取措施。例如,當(dāng)檢測(cè)到某個(gè)區(qū)域的人員密度異常時(shí),可以立即啟動(dòng)應(yīng)急預(yù)案,確保顧客和商場(chǎng)的安全。 節(jié)能環(huán)保管理 WIFI無(wú)線測(cè)距模塊還能幫助商場(chǎng)實(shí)現(xiàn)節(jié)能環(huán)保管理。通過(guò)實(shí)時(shí)監(jiān)測(cè)商場(chǎng)內(nèi)的溫度、濕度、光照等環(huán)境參數(shù),可以自動(dòng)調(diào)節(jié)空調(diào)、照明等設(shè)備的運(yùn)行狀態(tài),降低能耗。同時(shí),結(jié)合人流量數(shù)據(jù),可以實(shí)現(xiàn)分區(qū)域、分時(shí)段的節(jié)能控制,進(jìn)一步提高商場(chǎng)的能源利用效率。 四、WIFI無(wú)線測(cè)距模塊在大型商場(chǎng)中的優(yōu)勢(shì) 高精度測(cè)量 WIFI無(wú)線測(cè)距模塊采用創(chuàng)新的信號(hào)處理技術(shù),能夠?qū)崿F(xiàn)高精度的測(cè)量。在大型商場(chǎng)這種復(fù)雜環(huán)境下,仍能保持穩(wěn)定的測(cè)量性能,確保數(shù)據(jù)的準(zhǔn)確性和可靠性。 易于安裝與維護(hù) WIFI無(wú)線測(cè)距模塊采用無(wú)線傳輸方式,無(wú)需鋪設(shè)復(fù)雜的線纜和管道,安裝方便快捷。同時(shí),模塊具有高度的可維護(hù)性,出現(xiàn)故障時(shí)可通過(guò)遠(yuǎn)程診斷和修復(fù),降低了維護(hù)成本。 強(qiáng)大的擴(kuò)展性 WIFI無(wú)線測(cè)距模塊支持多種擴(kuò)展功能,如藍(lán)牙、ZigBee等其他無(wú)線通信協(xié)議的接入。這為商場(chǎng)未來(lái)的智能化升級(jí)提供了強(qiáng)大的技術(shù)支持。 高性?xún)r(jià)比 與傳統(tǒng)的有線測(cè)距技術(shù)相比,WIFI無(wú)線測(cè)距模塊具有更低的成本。同時(shí),由于其高度的靈活性和可擴(kuò)展性,使得商場(chǎng)在部署和使用過(guò)程中能夠獲得更高的性?xún)r(jià)比。 五、結(jié)論 WIFI無(wú)線測(cè)距模塊在大型商場(chǎng)中的應(yīng)用具有廣泛的前景和巨大的潛力。通過(guò)實(shí)時(shí)監(jiān)測(cè)顧客行為、人流量等數(shù)據(jù),商場(chǎng)可以實(shí)現(xiàn)精準(zhǔn)的市場(chǎng)分析和決策支持,提高運(yùn)營(yíng)效率和市場(chǎng)競(jìng)爭(zhēng)力。同時(shí),WIFI無(wú)線測(cè)距模塊還能帶來(lái)節(jié)能環(huán)保、智能安防等多重優(yōu)勢(shì),為商場(chǎng)的可持續(xù)發(fā)展提供有力保障。未來(lái),隨著技術(shù)的不斷進(jìn)步和應(yīng)用的不斷拓展,WIFI無(wú)線測(cè)距模塊將在大型商場(chǎng)中發(fā)揮更加重要的作用。
查看詳情 查看詳情
上一頁(yè)
1
2
...
313

地址:深圳市寶安區(qū)西鄉(xiāng)街道麻布社區(qū)寶安互聯(lián)網(wǎng)產(chǎn)業(yè)基地A區(qū)6棟7棟7706

郵箱:Sales@ferry-semi.com

版權(quán)所有?2020  深圳市飛??萍加邢薰?nbsp; 粵ICP備2020098907號(hào)    飛睿科技微波雷達(dá)wifi模塊網(wǎng)站地圖

 

免責(zé)聲明:本網(wǎng)站部分圖片和文字內(nèi)容以及視頻可能來(lái)源于網(wǎng)絡(luò),轉(zhuǎn)載目的在于傳遞更多信息,并不代表本網(wǎng)站贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性。如涉及作品內(nèi)容、版權(quán)和其它問(wèn)題,請(qǐng)?jiān)?0日內(nèi)與本網(wǎng)站聯(lián)系,我們將在第一時(shí)間刪除內(nèi)容!本站擁有對(duì)此聲明的最終解釋權(quán)。